基于matlab的lorenz混沌系统仿真

本文介绍了Lorenz混沌系统的概念及其在非线性动力系统中的重要性。文章详细阐述了Lorenz系统的状态方程和混沌特性,并讨论了参数辨识方法。还展示了在matlab2022a中的仿真效果,并提供了仿真源码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1.算法概述

2.仿真效果

3.matlab仿真源码


1.算法概述

       混沌系统是指在一个确定性系统中,存在着貌似随机的不规则运动,其行为表现为不确定性、不可重复、不可预测,这就是混沌现象。混沌是非线性动力系统的固有特性,是非线性系统普遍存在的现象。按照动力学系统的性质,混沌可以分成四种类型:时间混沌、 空间混沌、时空混沌、功能混沌。

        混沌现象是在非线性动力系统中表现的确定性、类随机的过程,这种过程既非周期又不收敛,并且对于初始值具有敏感的依赖性。混沌理论(Chaos theory)是关于非线性系统在一定参数条件下展现分岔(bifurcation)、周期运动与非周期运动相互纠缠,以至于通向某种非周期有序运动的理论。混沌理论在许多科学学科中得到广泛应用,包括:数学、生物学、信息技术、经济学、工程学、金融学、哲学、物理学、政治学、人口学、心理学和机器人学。

       1963年,Lorenz发现了第一个混沌吸引子——Lorenz系统,从此揭开了混沌研究的序幕,该系统也称为Lorenz混沌系统。从此,人们不断发现新的混沌奇异性,不断地加深与统一对混沌的理解。1963年,Lorenz发现了第一个混沌吸引子——Lorenz系统,从此揭开了混沌研究的序幕。人们不断发现新的混沌奇异性ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Simuworld

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值