关于语义分割的评估标准miou

文章探讨了在多分类问题中,如何使用混淆矩阵分析类别的预测性能。IoU(IntersectionoverUnion)用于衡量预测区域与真实区域的重合度,类1的IoU计算公式为TP/(TP+FN+FP),其中TP表示真正例,FN表示假负例,FP表示假正例。mIOU是所有类别的平均IoU,提供了一种评估整体分类效果的指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
就是一个多分类问题的混淆矩阵
以类1为例,p11就是TP,p12 p13 p14就是FN(实际是第一类但被预测为非第一类,即假阴性),p21 p31 p41就是FP(实际上不是第一类但被预测为第一类即假阳性)则类1的iou = TP/(TP+FN+FP),TP+FN+FP实际上也是预测图中类一的区域与标签中类一的区域的并集,TP是预测图中类一的区域与标签中类一的区域的交集,所以这里就是一个iou的概念。
mIOU就是所有类的平均iou。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值