语义分割是计算机视觉中的一个重要任务,其目标是将图像中的每个像素分类到一个特定的类别中。为了评估语义分割模型的性能,通常使用以下几个指标:
1. 准确率(Accuracy)
准确率是指模型正确分类的像素数占总像素数的比例。公式如下:
Accuracy = T P + T N T P + T N + F P + F N \text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN} Accuracy=TP+TN+FP+FNTP+TN
其中:
- ( TP )(True Positive):正确分类为正类的像素数
- ( TN )(True Negative):正确分类为负类的像素数
- ( FP )(False Positive):错误分类为正类的像素数
- ( FN )(False Negative):错误分类为负类的像素数
2. 平均交并比(Mean Intersection over Union, mIoU)
交并比(IoU)是指预测结果与真实标签的交集与并集的比值。平均交并比是对所有类别的IoU取平均值。公式如下:
IoU = T P T P + F P + F N \text{IoU} = \frac{TP}{TP + FP + FN} IoU=TP+FP+FNTP
mIoU = 1 N ∑ i = 1 N IoU i \text{mIoU} = \frac{1}{N} \sum_{i=1}^{N} \text{IoU}_i mIoU=