Harris-Affine仿射不变特征匹配算法

本文详细介绍了Harris-Affine算法的原理和实现过程,包括Harris-Laplace尺度不变角点算法、Harris-Affine的仿射不变性以及仿射匹配实验结果。Harris-Affine算法在尺度空间中提取特征点,并通过二阶矩计算实现仿射不变性。此外,还提到了Hessian-Affine算法,它基于二阶梯度微分算子,提供更强的稳定性和匹配性能。最后,提供了代码下载链接和相关参考资料。
摘要由CSDN通过智能技术生成
Harris-Affine原理概述

    文末已添加Github代码链接地址

尺度不变Harris-Laplace角点算法简述

  经典Harris作为当下运用最为广泛的提取角点算子,具有旋转、尺度、部分光照不变性,计算简单。Hessian角点检测是比Harris算子的更加稳定的角点检测算子只是计算效率相比Harris要高。随着Harris算子提出进一步发展为具有尺度不变性的角点检测算子Harris-LaplaceHarris-Laplace尺度不变算子主要通过在尺度空间图像上检测角点时添加尺度参数,主要步骤:
  1 当前尺度图像上搜索每一个候选点进行拉普拉斯响应值计算,满足Harris矩阵绝大值大于给定阈值条件。

F(x,y,σn)=σ2|Lxx(x,y,σn)+Lyy
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值