Prime 求最小生成树(C++基础算法)

27 篇文章 1 订阅
5 篇文章 0 订阅

题目条件:

给定一个 n 个点 m 条边的无向图图中可能存在重边自环,边权可能为负数

最小生成树:通过所给的边,将所有节点相连接,并且没有自环。

题目要求返回最小生成树边权之和。

算法流程:

1> 初始化:定义邻接矩阵 g[N][N] 存储边和权重,dist[N] 为 节点到集合的距离(集合含义:构成最小生成树的节点所构成的点集,该集合在遍历节点过程中逐渐将节点添加到集合中。)

memset(g,0x3f,sizeof g);
memset(dist,0x3f,sizeof dist);
dist[1] = 0;

最开始时候,可以定义所有边长为无穷大,节点到集合距离为无穷大。(定义1节点到集合距离为0)

2> 最小生成树包含所有节点,所以要经过n次遍历,将n个节点放到集合当中

3> 遍历集合外的节点,找到集合外节点到集合距离最小的那个节点,并将这个节点放到集合中,在答案中加上这个最小距离。(这里要判断,如果我们找到的点到集合的距离Wie无穷大,则意味着这个节点没有与其他节点相连接,不存在最小生成树)

4> 集合中添加新的节点后,更新集合外的点到集合的距离。

重复操作上述过程,最后范围答案。

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N = 510;
const int INF = 0x3f3f3f3f;
int g[N][N],dist[N];
int n,m;
int res;
bool st[N];//用于判断该点是否在集合中

bool prime(){
    memset(dist,0x3f,sizeof dist);
    dist[1] = 0;//初始化第一个节点方便进行算法
    res = 0;    //将结果值为零
    for(int i = 0;i < n;i++){ //算法要求进行n次迭代,将n个点加入到集合中
        int t = -1;       //用于存储最小距离节点,当我们不知道用哪个点进行切入就设置t = -1;
        for(int j = 1;j <= n;j++){
            if(!st[j] && (t == -1 || dist[t] > dist[j])) t = j;
            //如果j节点不在集合中,并且节点t到集合的距离要大于当前遍历到的节点j的距离,则更新t;
        }
        if(dist[t] > INF / 2) return false;
        //如果我们发现最小距离是无穷大,则不存在最小生成树
        st[t] = true;                      
        //否则,我们找到了最小距离节点t,并将t放到集合中
        res += dist[t];                    
        //在记录最小生成树边权之和的变量中加上这个最小距离
        for(int j = 1;j <= n;j++){         //边所有节点
            if(!st[j]) dist[j] = min(dist[j],g[t][j]);
            //如果这个节点不在集合中,则更新这个点到集合的距离
        }
    }
    return true;
}

int main(){
    std::ios::sync_with_stdio(false);
    std::cin.tie(0);
    cin >> n >> m;
    memset(g,0x3f,sizeof g);
    
    while(m--){
        int a,b,c;
        cin >> a >> b >> c;
        g[a][b] = g[b][a] = min(g[a][b],c);
    }
    if(prime()) cout << res << endl;
    else cout << "impossible" << endl;
    return 0;
}

大家一定要牢记这些算法模板!!!~~~~!!!

祝大家学好算法,有什么问题欢迎问我~

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值