深度学习各种常见的Net

转自:https://blog.csdn.net/qq_38906523/article/details/79075961

LeNet:基于渐变的学习应用于文档识别

AlexNet:具有深卷积神经网络的ImageNet分类

ZFNet:可视化和理解卷积网络

VGGNet:用于大规模图像识别的非常深的卷积网络

NiN:网络中的网络

GoogLeNet:卷入更深入

Inception-v3:重新思考计算机视觉的初始架构

ResNet:图像识别的深度残差学习

Stochastic_Depth:具有随机深度的深层网络

WResNet:非常深的网络的加权残差

Inception-ResNet:Inception-v4,inception-resnet以及剩余连接对学习的影响

Fractalnet:没有残差的超深层神经网络

WRN:宽残留网络

ResNeXt:深层神经网络的聚合残差变换

DenseNet:密集连接的卷积网络

PyramidNet:深金字塔残留网络

DPN:双路径网络

SqueezeNet:AlexNet级准确度,参数减少50倍,模型尺寸小于0.5MB

MobileNets:用于移动视觉应用的高效卷积神经网络

ShuffleNet:移动设备极高效的卷积神经网络 博主设置当前文章不允许评论。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值