转自:https://blog.csdn.net/qq_38906523/article/details/79075961
LeNet:基于渐变的学习应用于文档识别
AlexNet:具有深卷积神经网络的ImageNet分类
ZFNet:可视化和理解卷积网络
VGGNet:用于大规模图像识别的非常深的卷积网络
NiN:网络中的网络
GoogLeNet:卷入更深入
Inception-v3:重新思考计算机视觉的初始架构
ResNet:图像识别的深度残差学习
Stochastic_Depth:具有随机深度的深层网络
WResNet:非常深的网络的加权残差
Inception-ResNet:Inception-v4,inception-resnet以及剩余连接对学习的影响
Fractalnet:没有残差的超深层神经网络
WRN:宽残留网络
ResNeXt:深层神经网络的聚合残差变换
DenseNet:密集连接的卷积网络
PyramidNet:深金字塔残留网络
DPN:双路径网络
SqueezeNet:AlexNet级准确度,参数减少50倍,模型尺寸小于0.5MB
MobileNets:用于移动视觉应用的高效卷积神经网络
ShuffleNet:移动设备极高效的卷积神经网络 博主设置当前文章不允许评论。