弗莱纳公式

转自:http://dictionary.sensagent.com/%E5%BC%97%E8%8E%B1%E7%BA%B3%E5%85%AC%E5%BC%8F/zh-zh/

弗莱纳公式

                   

  空间曲线的切向量 T,法向量 N 和副法向量 B;以及切向量和法向量张成的密切平面

向量微积分中,弗莱纳公式(Frenet–Serret 公式)用来描述欧几里得空间R3中的粒子在连续可微曲线上的运动。更具体的说,弗莱纳公式描述了曲线的切向,法向,副法方向之间的关系。

单位切向量 T,单位法向量 N,单位副法向量 B,被称作 弗莱纳标架,他们的具体定义如下:

  • T 是单位切向量,方向指向粒子运动的方向。
  • N 是切向量 T 对弧长参数的微分单位化得到的向量。
  • B 是 T 和 N 的外积

弗莱纳公式如下:

\begin{matrix} \frac{d\mathbf{T}}{ds} &=& & \kappa \mathbf{N} & \\ &&&&\\ \frac{d\mathbf{N}}{ds} &=& - \kappa \mathbf{T} & &+\, \tau \mathbf{B}\\ &&&&\\ \frac{d\mathbf{B}}{ds} &=& & -\tau \mathbf{N} & \end{matrix}

其中d/ds 是对弧长的微分, κ 为曲线的曲率,τ 为曲线的挠率。弗莱纳公式描述了空间曲线曲率挠率的变化规律。

目录

  弗莱纳公式

  平面曲线上的亮点的切向量和法向量,以及标架在运动过程中的旋转。

r(t) 为欧式空间R3中的曲线,表示粒子在时间 t 时刻的位置向量。 弗莱纳公式只适用于正则曲线,即速度向量r′(t)和加速度向量r′′(t)不为零的曲线。

记 s(t) 为 t时刻粒子所在位置到曲线上某定点的弧长

s(t)=\int_0^t \|\mathbf{r}'(\tau)\|d\tau.

由于假设r′ ≠ 0,因此可以将 t 表示为 s 的函数,因此可将曲线表示为弧长 s 的函数 r(s) = r(t(s))。 s 通常也被称为曲线的弧长参数。

对于由弧长参数定义的正则曲线 r(s),弗莱纳标架 (或弗莱纳基底)定义如下:

  • 单位切向量 T

\mathbf{T} = {d\mathbf{r} \over ds}. \qquad \qquad (1)

  • 主法向量 N

\mathbf{N} = {\frac{d\mathbf{T}}{ds} \over \left\| \frac{d\mathbf{T}}{ds} \right\|}. \qquad \qquad (2)

  • 副法向量 B 定义为 T 和 N 的外积

\mathbf{B} = \mathbf{T} \times \mathbf{N}. \qquad \qquad (3)

  螺旋线上弗莱纳标架的运动。蓝色的箭头表示切向量,红色的箭头表示法向量,黑丝的箭头表示副法向量。

由于 |\mathbf{T}|=1,    \frac{d(\mathbf{T}\cdot \mathbf{T})}{ds} =2\mathbf{T}\cdot\mathbf{N} =0, 所以 N 与 T 垂直。 方程 (3) 说明 B 垂直于 T 和 N,因此向量 TNB 互相垂直。

弗莱纳公式如下:

\begin{matrix} \frac{d\mathbf{T}}{ds} &=& & \kappa \mathbf{N} & \\ &&&&\\ \frac{d\mathbf{N}}{ds} &=& - \kappa \mathbf{T} & &+\, \tau \mathbf{B}\\ &&&&\\ \frac{d\mathbf{B}}{ds} &=& & -\tau \mathbf{N} & \end{matrix}

其中 κ 为曲线的曲率,τ 为曲线的挠率

弗莱纳公式有时也被称作弗莱纳定理,并且可以写做矩阵的形式:[1]

\begin{bmatrix} \mathbf{T'} \\ \mathbf{N'} \\ \mathbf{B'} \end{bmatrix} = \begin{bmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{bmatrix} \begin{bmatrix} \mathbf{T} \\ \mathbf{N} \\ \mathbf{B} \end{bmatrix}.

其中的矩阵是反对称矩阵

对弧长s求导,可以看成是对切方向的协变导数。

  参阅

  注释

  1. ^ Kühnel(2002年),§1.9

  参考资料

  • Crenshaw, H.C.; Edelstein-Keshet, L., Orientation by Helical Motion II. Changing the direction of the axis of motion, Bulletin of Mathematical Biology. 1993, 55 (1): 213–230
  • Etgen, Garret; Hille, Einar; Salas, Saturnino, Salas and Hille's Calculus — One and Several Variables. 7th, John Wiley & Sons. 1995:  896
  • Frenet, F., Sur les courbes à double courbure, Thèse, Toulouse. 1847. Abstract in J. de Math. '17', 1852.
  • Goriely, A.; Robertson-Tessi, M.; Tabor, M.; Vandiver, R., Elastic growth models, BIOMAT-2006, Springer-Verlag. 2006.
  • Griffiths, Phillip, On Cartan's method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry, Duke Mathematics Journal. 1974, 41 (4): 775–814, doi:10.1215/S0012-7094-74-04180-5.
  • Guggenheimer, Heinrich, Differential Geometry, Dover. 1977, ISBN 0-486-63433-7
  • Hanson, A.J., Quaternion Frenet Frames: Making Optimal Tubes and Ribbons from Curves, Indiana University Technical Report. 2007
  • Iyer, B.R.; Vishveshwara, C.V., Frenet-Serret description of gyroscopic precession, Phys. Rev., D. 1993, 48 (12): 5706–5720
  • Jordan, Camille, Sur la théorie des courbes dans l'espace à n dimensions, C. R. Acad. Sci. Paris. 1874, 79: 795–797
  • Kühnel, Wolfgang, Differential geometry, Student Mathematical Library, 16, Providence, R.I.: American Mathematical Society. 2002, MR1882174ISBN 978-0-8218-2656-0
  • Serret, J. A., Sur quelques formules relatives à la théorie des courbes à double courbure, J. De Math.. 1851, 16.
  • Spivak, Michael, A Comprehensive Introduction to Differential Geometry (Volume Two), Publish or Perish, Inc.. 1999.
  • Sternberg, Shlomo, Lectures on Differential Geometry, Prentice-Hall. 1964
  • Struik, Dirk J., Lectures on Classical Differential Geometry, Reading, Mass: Addison-Wesley. 1961.

  外部链接

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值