蛋白质-蛋白质相互作用的常用方法及其技术优势

蛋白质-蛋白质相互作用(PPIs)在调控蛋白质动力学和功能特性方面发挥着至关重要的作用。PPIs 的失调与多种疾病密切相关,包括癌症、神经退行性疾病和自身免疫性疾病。因此,深入研究 PPIs 不仅是理解疾病机制的关键,也是开发有效治疗策略的重要基础。

尽管 PPIs 的研究具有重要意义,但该领域的进展受到研究复杂性和对蛋白质及其复合物深入理解的高要求的限制。近年来,基于质谱(MS)的技术已成为研究 PPIs 的有力工具,凭借其卓越的灵敏度和特异性,这些方法能够系统性地解析蛋白质复合物,并在复杂的信号转导网络中揭示相互作用的对应关系。

通过将基于 MS 的蛋白质组学技术与免疫沉淀、交联、有限蛋白水解和热分析等方法相结合,研究者能够更深入地理解信号通路的动力学和调控机制。这些技术的综合应用为 PPIs 的研究提供了前所未有的精确性和系统性。

基于质谱的蛋白质相互作用研究进展

本文将重点介绍四种主要技术的原理、方法、最新进展、应用、优势和局限性,包括亲和纯化质谱(AP-MS)、邻位标记质谱法(PL-MS)、有限蛋白水解耦合质谱法(LiP-MS)和热蛋白质组分析(TPP)。这些技术的详细介绍旨在为相关领域的研究者提供参考,助力 PPIs 研究的进一步突破。

一、亲和纯化质谱法 (AP-MS)

亲和纯化质谱(Affinity Purification Mass Spectrometry, AP-MS)是一种强大的质谱技术,用于发现和分析生物系统中的PPIs。该方法结合了亲和纯化的特异性和质谱的高灵敏度,能够揭示蛋白质复合物的结构组分。AP-MS通过使用抗体或融合标签从复杂的生物材料中分离特定蛋白质或蛋白质复合物,然后利用质谱鉴定与其相互作用的蛋白质。该技术已被广泛应用于分析PPI网络,提供了关于细胞信号传导途径、蛋白质复合物形成以及疾病过程的重要知识。AP-MS的优势在于其能够捕获稳定和瞬时的蛋白质相互作用,提供特定实验条件下蛋白质互作组的全面视图。然而,其局限性包括对亲和标签或抗体的依赖,可能导致非特异性结合或交叉反应,且可能无法识别弱或瞬时的相互作用。

AP-MS主要流程图

二、邻近标记质谱(PL-MS)

邻近标记质谱(Proximity Labeling Mass Spectrometry,PL-MS)是一种先进的技术,用于研究生物环境中的PPIs和空间邻近性。PL-MS利用酶(如细菌生物素连接酶BirA*和过氧化物酶如HRP和APEX)对目标蛋白周围的蛋白质进行标记,从而捕获瞬时或弱相互作用。该方法通过将目标蛋白与标记酶融合,在激活酶后产生短寿命的自由基,与邻近蛋白质形成共价键,然后通过链霉亲和素亲和纯化和质谱分析鉴定标记的蛋白质。PL-MS在解析天然免疫信号网络的结构和功能方面取得了显著进展,例如揭示了炎症体激活过程中关键蛋白的相互作用。然而,PL-MS可能因扩散效应而难以区分直接相互作用和邻近蛋白,且可能因过氧化氢激活APEX而引发细胞应激反应,导致非特异性标记。

PL-MS 实验中三种主要定量方法的实验流程图

三、有限酶解质谱(LiP-MS)

有限酶解质谱(Limited Proteolysis-coupled Mass Spectrometry, LiP-MS)是一种前沿技术,用于理解生物系统中蛋白质结构变化和相互作用的复杂性。LiP-MS通过在天然条件下对蛋白质进行有限酶切,然后利用质谱分析片段,揭示蛋白质的结构变化。该技术通过控制蛋白质的酶切程度,提供关于蛋白质结构和构象变化的信息。LiP-MS已被广泛用于研究小分子与蛋白质相互作用引起的结构变化以及疾病进展中的蛋白质变化。尽管LiP-MS能够提供蛋白质结构变化的深刻见解,但其对非特异性蛋白酶的使用可能导致不完全消化或偏向性切割模式,且在复杂生物混合物中数据解释复杂。

LiP-MS流程图

四、热蛋白质组分析(TPP)

热蛋白质组分析(Thermal Proteome Profiling,TPP)基于细胞热移位分析(CETSA),通过测量蛋白质在热变性和聚集过程中的热稳定性变化,分析蛋白质-配体相互作用。TPP通过将细胞或裂解物暴露于温度梯度下,然后利用质谱分析不同温度条件下的蛋白质丰度变化。该技术能够识别多个目标,无需事先了解其信息,已被用于研究天然免疫系统中热休克蛋白的结构变化以及抗病毒抑制剂的广泛靶点。TPP的优势在于其能够全面分析全蛋白质组范围内的蛋白质-配体相互作用和复合物形成,但其可能因非特异性蛋白聚集和对专业质谱仪器的依赖而产生假阳性,需要严格的验证和对照实验。

TPP实验流程

五、总结

技术

原理

应用

优点

缺点

AP-MS

结合亲和纯化和质谱分析,鉴定蛋白质复合物组分

研究天然免疫信号通路中的蛋白质相互作用

高特异性、灵敏度高

依赖抗体或标签质量,可能遗漏弱相互作用,背景噪声干扰

PL-MS

通过酶催化标记邻近蛋白质,捕获瞬时或弱相互作用

研究天然免疫信号网络中的动态相互作用

捕获瞬时或弱相互作用,适用于多种实验系统

可能假阳性,背景噪声高,优化实验条件复杂

LiP-MS

通过有限酶切分析蛋白质结构变化,揭示相互作用

研究天然免疫信号通路中蛋白质的构象变化及其相互作用

提供结构信息,揭示构象变化

依赖酶切可行性,数据解释复杂,不适用于所有蛋白复合物

TPP

通过热稳定性变化分析蛋白质-配体相互作用

研究天然免疫信号通路中蛋白质的稳定性变化及其复合物形成

高通量,分析全蛋白质组范围内的相互作用

需严格控制实验条件,可能遗漏低丰度或瞬时相互作用

本文探讨了PPIs在生物过程中的关键作用及其与多种疾病的密切关联,并全面综述了种基于质谱的技术(AP-MS、PL-MS、LiP-MS和TPP)。这些技术各具特色,从捕获稳定和瞬时相互作用的AP-MS,到解析动态相互作用的PL-MS,再到提供结构信息的LiP-MS和TPP,它们为研究天然免疫系统中的PPIs提供了多样化的工具。文章详细阐述了这些技术的原理、应用、优势和局限性,展示了它们在解析天然免疫信号网络的结构和功能方面的显著进展。通过这些技术,研究人员能够深入理解PPIs的复杂性,为疾病机制研究和治疗策略开发提供了有力支持。如需进一步了解上述技术平台的构建与应用,或希望开展相关合作研究,欢迎随时与我们联系。

本研究利用Sen+MK方法分析了特定区域内的ET(蒸散发)趋势,重点评估了使用遥感数据的ET空间变化。该方法结合了Sen斜率估算器和Mann-Kendall(MK)检验,为评估长期趋势提供了稳健的框架,同时考虑了时间变化和统计显著性。 主要过程与结果: 1.ET趋势可视化:研究利用ET数据,通过ET-MK和ET趋势图展示了蒸散发在不同区域的空间和时间变化。这些图通过颜色渐变表示不同的ET水平及其趋势。 2.Mann-Kendall检验:应用MK检验来评估ET趋势的统计显著性。检验结果以二元分类图呈现,标明ET变化的显著性,帮助识别出有显著变化的区域。 3.重分类结果:通过重分类处理,将区域根据ET变化的显著性进行分类,从而聚焦于具有显著变化的区域。这一过程确保分析集中在具有实际意义的发现上。 4.最终输出:最终结果以栅格图和png图的形式呈现,支持各种应用,包括政策规划、水资源管理和土地利用变化分析,这些都是基于详细的时空分析。 ------------------------------------------------------------------- 文件夹构造: data文件夹:原始数据,支持分析的基础数据(MOD16A2H ET数据 宁夏部分)。 results文件夹:分析结果与可视化,展示研究成果。 Sen+MK_optimized.py:主分析脚本,适合批量数据处理和自动化分析。 Sen+MK.ipynb:Jupyter Notebook,复现可视化地图。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值