语义分割、域适应相关论文

本文汇总了当前语义分割领域的最新研究,包括Anti-aliasing Semantic Reconstruction、生成模型应用、弱监督方法以及域适应策略。探讨了如何通过增强一致性、伪标签降噪、双软粘贴等技术提升模型性能,适用于医疗图像分析和自动驾驶等多个场景。
摘要由CSDN通过智能技术生成

segmentation paper

1. Anti-aliasing Semantic Reconstruction for Few-Shot Semantic Segmentation

  • 将小样本分割重新表述为语义重建的问题
  • 提出了anti-aliasing semantic reconstruction (ASR)
  • 将基类特征转成基向量,张成一个语义空间,即semantic span
  • 在训练期间,ASR利用语义空间,最大化基向量的正交性,最小化基类semantic aliasing ,帮助reconstruct新类
  • 在推理期间,ASR利用semantic filtering 抑制语义干扰,精确激活目标物体区域
  • 作者 | Binghao Liu, Yao Ding, Jianbin Jiao, Xiangyang Ji, Qixiang Ye
  • 单位 | 国科大;清华
  • 论文 | https://link.zhihu.com/?target=https%3A//arxiv.org/abs/2106.00184
  • 代码 | https://link.zhihu.com/?target=https%3A//github.com/Bibkiller/ASR

2. Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalization

3. Railroad is not a Train: Saliency as Pseudo-pixel Supervision for Weakly Supervised Semantic Segmentation

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值