YOLOv11融合Focal-IoU及相关改进思路


YOLOv11v10v8使用教程:  YOLOv11入门到入土使用教程

YOLOv11改进汇总贴:YOLOv11及自研模型更新汇总 


《Focal and Efficient IOU Loss for Accurate Bounding Box Regression》

一、 模块介绍

        论文链接:https://arxiv.org/abs/2101.08158

        代码链接:-

论文速览:

       在对象检测中,边界框回归 (BBR) 是决定对象定位性能的关键步骤。然而,我们发现大多数以前的 BBR 损失函数有两个主要缺点:(i) 基于 'n-norm 和基于 IOU 的损失函数都无法有效地描述 BBR 的目标,从而导致收敛缓慢和回归结果不准确。(ii) 大多数损失函数忽略了 BBR 中的不平衡问题,即大量与目标框重叠较小的锚框对 BBR 的优化贡献最大。为了减轻由此造成的不利影响,我们在本文中进行了深入研究以开发 BBR 损失的潜力。首先,提出了一种有效的并联交集 (EIOU) 损失,它明确度量了 BBR 中 3 个几何因子(即重叠面积、中心点和边长)的差异;之后,我们陈述了有效示例挖掘 (EEM) 问题,并提出了 focal loss 的回归版本,使回归过程集中在高质量的锚框上。最后,将上述两部分结合起来,得到一个新的损失函数,即Focal-EIOU loss。对合成数据集和真实数据集进行了广泛的实验。与其他 BBR 损失相比,在收敛速度和定位精度方面都可以获得显着优势。

总结:Focal - IoU。


⭐⭐本文二创模块仅更新于付费群中,往期免费教程可看下方链接⭐⭐

YOLOv11及自研模型更新汇总(含免费教程)文章浏览阅读366次,点赞3次,收藏4次。群文件2024/11/08日更新。,群文件2024/11/08日更新。_yolo11部署自己的数据集https://xy2668825911.blog.csdn.net/article/details/143633356

⭐⭐付费项目简介:融合上百种顶刊顶会模块的YOLO项目仅119(赠百种改进的v9),此外含自研模型与本文模块融合进行二创三创,最快1-2周完成小论文改进实验,代码每周更新(上周更新超20+二创模块),欢迎QQ:2668825911(或点击下方小卡片扫二维码)加我了解。⭐⭐

⭐⭐本项目并非简单的模块插入,平均每个文章对应4-6个二创或自研融合模块,有效果即可写论文或三创。本文项目使用ultralytics框架,兼容YOLOv3\5\6\8\9\10\world与RT-DETR。⭐⭐

        已进群小伙伴可以先用下文二创及自研模块在自己的数据集上测试,有效果再进行模块结构分析或继续改进。


二、使用教程

2.1 步骤

        找到ultralytics/utils/loss.py脚本第108行,取消注释改行,并将其他iou行注释,运行即可。(仅适应于群文件2024/11/30日之后更新的工程)

        其中 MDPIoU参数可更换为GIoU, DIoU, EIoU, CIoU, SIoU, shapeIoU, MDPIoU, PowerfulIoU, PowerfulIoUv2,分别对应不同形式的损失函数。

2.2修改train.py文件

       创建Train脚本用于训练。

from ultralytics.models import YOLO
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'

if __name__ == '__main__':
    model = YOLO(model='ultralytics/cfg/models/xy_YOLO/xy_yolov1-ConvNeXt.yaml')
    # model = YOLO(model='ultralytics/cfg/models/11/yolo11l.yaml')
    model.train(data='./datasets/data.yaml', epochs=1, batch=1, device='0', imgsz=320, workers=1, cache=False,
                amp=True, mosaic=False, project='run/train', name='exp',)

         在train.py脚本中填入修改好的yaml路径,运行即可训练,数据集创建教程见下方链接。

YOLOv11入门到入土使用教程(含结构图)_yolov11使用教程-CSDN博客


我想要减小分类损失,添加使用Focal Loss缓解类别不平衡问题。我将提供loss.py和metrics.py中的相关代码,请帮我进行补充,保证box_loss的减小,同时实现cls_loss的减小 loss.py中代码: def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask): """IoU loss.""" weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1) # iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, CIoU=True) # loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask],xywh=False, alpha_iou=True, alpha=3.0) loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum if type(iou) is tuple: if len(iou) == 2: loss_iou = ((1.0 - iou[0]) * iou[1].detach() * weight).sum() / target_scores_sum else: loss_iou = (iou[0] * iou[1] * weight).sum() / target_scores_sum else: loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum metrics.py中代码: def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False,alpha_iou=False,alpha=3.0, eps=1e-7): #中间不变 # IoU iou = inter / union if CIoU or DIoU or GIoU: cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1) # convex (smallest enclosing box) width ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1) # convex height if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 c2 = cw.pow(2) + ch.pow(2) + eps # convex diagonal squared rho2 = ( (b2_x1 + b2_x2 - b1_x1 - b1_x2).pow(2) + (b2_y1 + b2_y2 - b1_y1 - b1_y2).pow(2) ) / 4 # center dist**2 if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 v = (4 / math.pi**2) * ((w2 / h2).atan() - (w1 / h1).atan()).pow(2) with torch.no_grad(): alpha = v / (v - iou + (1 + eps)) return iou - (rho2 / c2 + v * alpha) # CIoU return iou - rho2 / c2 # DIoU c_area = cw * ch + eps # convex area return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf # 添加Alpha-IoU计算 if alpha_iou: alpha = alpha if alpha > 0 else 3.0 # 默认α=3 alpha_iou = 1 - ((1 - iou) ** alpha) # Alpha-IoU公式 return alpha_iou return iou # IoU
最新发布
03-31
<think>好的,我现在需要帮用户解决如何通过添加Focal Loss来减小分类损失,同时保证box_loss也减小的问题。用户提供了loss.py和metrics.py的相关代码,需要我进行补充。首先,我需要理解用户的需求和现有代码的结构。 首先,用户提到他们想用Focal Loss来缓解类别不平衡问题。Focal Loss主要是通过调整难易样本的权重来解决类别不平衡,所以重点应该在分类损失部分。但用户同时也希望box_loss(即回归损失)减小,所以可能需要同时调整这两个部分。 现在看用户提供的loss.py中的forward函数。当前的分类损失计算可能没有使用Focal Loss,而是普通的交叉熵。我需要找到分类损失的计算部分,替换或修改为Focal Loss的实现。但用户提供的代码中,forward函数的参数有pred_dist和pred_bboxes,可能这个函数处理的是分布式的预测?或者可能用户使用的是YOLO系列的模型,其中pred_dist可能和分类有关? 不过,在当前的forward函数中,主要计算的是iou损失,即回归损失。分类损失的计算可能在别的地方,或者可能在用户提供的代码中没有显示出来。用户可能只展示了部分代码,比如在loss.py中可能还有其他部分,比如分类损失的计算。 但根据用户提供的代码段,现有的loss计算主要处理的是IoU loss,而分类损失可能是在其他地方处理。用户可能希望在分类损失中引入Focal Loss,同时调整回归损失(比如使用Alpha-IoU)来同时优化两者。 另外,在metrics.py中,用户已经实现了Alpha-IoU的计算,当alpha_iou参数为True时,会计算Alpha-IoU。当前的loss.py中的forward函数已经使用了alpha_iou=True,并且alpha=3.0,这说明回归损失可能已经在使用Alpha-IoU,这是一种改进IoU计算方法,可能帮助回归损失更好地收敛。 所以,用户现在的问题可能是分类损失没有使用Focal Loss,导致类别不平衡的问题。因此,我需要帮助用户在loss.py中添加Focal Loss的实现,替换现有的分类损失计算。 接下来,我需要检查用户提供的代码中分类损失的部分。在用户提供的loss.py的forward函数参数中,有pred_dist, pred_bboxes,可能pred_dist是分类的预测分布?或者可能是其他结构。但用户提供的代码中,在forward函数中计算的是iou损失,即回归损失,而分类损失可能在别处计算,比如可能target_scores是分类的目标分数,而当前可能使用交叉熵损失。 因此,我需要找到分类损失的计算部分,并将其替换为Focal Loss。但用户提供的代码段中,可能分类损失的计算没有展示出来。例如,可能在loss.py的其他部分,或者在其他函数中处理。用户可能在当前的forward函数中没有包含分类损失的计算,或者可能分类损失是在其他地方计算的。 或者,可能target_scores是分类的目标,而当前可能使用某种损失函数来计算分类损失,但用户希望将其替换为Focal Loss。 假设在当前的代码中,分类损失是使用普通的交叉熵损失,那么用户需要将其修改为Focal Loss。因此,我需要指导用户在loss.py中添加Focal Loss的实现。 此外,用户提到希望同时减小box_loss和cls_loss,所以可能需要同时调整这两个部分。例如,在回归损失中使用Alpha-IoU(已经实现),在分类损失中使用Focal Loss。 现在,我需要编写Focal Loss的代码,并将其集成到loss.py的forward函数中。假设当前的分类损失计算部分在loss.py的其他位置,或者在forward函数中未被展示的部分。例如,可能在用户未提供的代码部分,分类损失是使用target_scores和pred_dist之间的交叉熵计算的。 因此,我需要建议用户修改分类损失的计算部分,用Focal Loss替换原来的交叉熵损失。 此外,用户可能需要注意Focal Loss的参数设置,比如gamma和alpha,这些可能需要调整以适应具体的类别不平衡情况。 现在,我需要考虑如何将Focal Loss整合到现有的代码结构中。假设在当前的forward函数中,分类损失的计算类似于: cls_loss = BCEWithLogitsLoss(pred_cls, target_scores) 或者类似的结构。用户需要将其替换为Focal Loss的实现。 在PyTorch中,Focal Loss可以基于二分类交叉熵实现,公式为FL(p_t) = -alpha * (1 - p_t)^gamma * log(p_t),其中p_t是预测概率。 因此,在代码中,可以定义一个Focal Loss类,并在forward函数中使用它来计算分类损失。 另外,用户提供的target_scores可能已经是one-hot编码的形式,或者是类别概率,所以需要确保Focal Loss的实现与之匹配。 现在,我需要具体查看用户提供的loss.py代码中的forward函数,是否有处理分类损失的部分。根据用户提供的代码段: 在loss.py的forward函数中,参数有pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask。当前代码计算的是iou loss,即回归损失。可能分类损失的计算在别处,或者可能pred_dist与分类有关? 比如,可能pred_dist是分类的预测,而target_scores是目标分类分数。因此,分类损失的计算可能需要将pred_dist与target_scores进行比较,使用Focal Loss。 在这种情况下,用户需要在loss.py的forward函数中添加分类损失的计算部分,使用Focal Loss。 因此,我需要帮助用户在现有的forward函数中补充Focal Loss的计算,并将其整合到总损失中。 现在,我需要具体写出如何修改loss.py的代码。例如,在forward函数中,除了计算iou loss之外,还需要计算cls loss,使用Focal Loss。 假设当前没有计算cls loss的部分,或者需要修改现有的cls loss计算方式。 根据用户提供的代码段,现有的forward函数可能只计算了iou loss,而可能分类损失的计算在别处。因此,可能需要用户补充这部分。 或者,可能用户希望将Focal Loss集成到当前的代码中,所以需要指导用户如何修改。 例如,在loss.py中,可能有一个分类损失的计算部分,如: loss_cls = self.bce(pred_scores, target_scores) # 原来的交叉熵损失 需要将其替换为Focal Loss。 因此,我需要写出Focal Loss的实现,并在forward函数中使用它。 总结步骤: 1. 在loss.py中定义Focal Loss类或函数。 2. 在forward函数中,计算分类损失时使用Focal Loss代替原来的损失函数。 3. 确保回归损失(box_loss)已经正确使用Alpha-IoU,这可能已经在用户代码中处理(如当前的iou计算中,alpha_iou=True)。 4. 调整超参数,如gamma和alpha,可能需要用户根据实际情况调整。 现在,我需要具体写出这些步骤的代码示例。 例如,在loss.py中添加一个FocalLoss类: class FocalLoss(nn.Module): def __init__(self, alpha=0.25, gamma=2.0, reduction='sum'): super(FocalLoss, self).__init__() self.alpha = alpha self.gamma = gamma self.reduction = reduction def forward(self, inputs, targets): BCE_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction='none') pt = torch.exp(-BCE_loss) # 计算p_t F_loss = self.alpha * (1 - pt) ** self.gamma * BCE_loss if self.reduction == 'sum': return F_loss.sum() elif self.reduction == 'mean': return F_loss.mean() else: return F_loss 然后,在forward函数中,使用这个FocalLoss来计算分类损失。 假设原来的分类损失计算是这样的: pred_scores = ... # 模型输出的分类分数 loss_cls = self.bce(pred_scores, target_scores) # 原来的BCE损失 现在需要替换为: loss_cls = self.focal_loss(pred_scores, target_scores) 其中,self.focal_loss是FocalLoss的实例。 此外,用户需要确保在初始化时添加这个focal_loss,例如在loss类的__init__方法中: self.focal_loss = FocalLoss(alpha=0.25, gamma=2.0) 参数alpha和gamma可能需要根据数据集的类别分布进行调整,比如alpha用于平衡正负样本,gamma用于调节难易样本的权重。 接下来,在现有的forward函数中,可能已经计算了cls_loss,但需要替换为Focal Loss。例如,在用户提供的代码中,可能没有显示cls_loss的计算,因此需要补充这部分。 此外,用户提到的希望同时减小box_loss和cls_loss,可能需要注意两个损失的权重,确保两者都能得到优化。可能需要调整总损失中两者的比例,但用户可能没有提到需要调整权重,所以暂时假设保持原有权重。 现在,结合用户提供的代码,假设在loss.py的forward函数中,需要计算cls_loss,使用Focal Loss,同时回归损失使用Alpha-IoU。 例如,修改后的forward函数可能如下: def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask): # 计算回归损失(box_loss) weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1) iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, alpha_iou=True, alpha=3.0) if type(iou) is tuple: # 处理tuple情况,可能包含iou和其他值 # 根据用户提供的代码,可能有不同的处理方式 # 例如,iou[0]是iou值,iou[1]是其他参数 loss_iou = ((1.0 - iou[0]) * iou[1].detach() * weight).sum() / target_scores_sum else: loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum # 计算分类损失(cls_loss)使用Focal Loss # 假设pred_dist是分类的预测,target_scores是目标one-hot编码 # 这里需要将pred_dist和target_scores输入到Focal Loss中 # 注意:需要根据实际模型输出调整,例如是否应用sigmoid pred_cls = pred_dist # 假设pred_dist是分类的logits loss_cls = self.focal_loss(pred_cls, target_scores) # 总损失可能需要结合两个部分,这里假设原有代码可能将两者相加 total_loss = loss_iou + loss_cls return total_loss, loss_iou, loss_cls 但需要确保pred_dist的形状和target_scores匹配,并且Focal Loss的实现正确。 此外,用户提供的代码中,target_scores_sum可能用于归一化,所以在计算cls_loss时是否需要除以target_scores_sum?例如,原回归损失中的loss_iou是除以target_scores_sum,而分类损失可能也需要同样的归一化,或者Focal Loss内部已经处理了。 例如,在原来的代码中,回归损失计算为: loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum 同样,分类损失可能需要: loss_cls = self.focal_loss(pred_cls, target_scores) / target_scores_sum 或者,在Focal Loss的实现中,reduction='sum',然后除以target_scores_sum以进行归一化。 因此,在Focal Loss的forward函数中,如果使用reduction='sum',则计算总和,然后除以target_scores_sum,类似于回归损失的处理方式。 例如: loss_cls = self.focal_loss(pred_cls, target_scores) / target_scores_sum 这将使得分类损失和回归损失处于相似的量级,便于优化。 现在,需要将这些修改整合到用户的代码中。此外,用户需要确保在metrics.py中的bbox_iou函数正确支持Alpha-IoU的计算,这部分用户已经实现,所以可能不需要修改。 总结需要用户进行的步骤: 1. 在loss.py中添加FocalLoss类定义。 2. 在loss类的__init__方法中初始化focal_loss。 3. 在forward函数中,计算cls_loss时使用focal_loss,并除以target_scores_sum进行归一化。 4. 确保回归损失已经使用Alpha-IoU(用户当前代码中已经设置alpha_iou=True和alpha=3.0)。 可能的代码修改示例: 在loss.py中添加: class FocalLoss(nn.Module): def __init__(self, alpha=0.25, gamma=2.0, reduction='sum'): super().__init__() self.alpha = alpha self.gamma = gamma self.reduction = reduction def forward(self, inputs, targets): # 计算二分类交叉熵 bce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction='none') pt = torch.exp(-bce_loss) # p_t = exp(-BCE),即sigmoid(inputs)对应的概率 focal_loss = self.alpha * (1 - pt) ** self.gamma * bce_loss if self.reduction == 'sum': return focal_loss.sum() elif self.reduction == 'mean': return focal_loss.mean() else: return focal_loss 然后,在现有的损失类中,例如在__init__方法中: self.focal_loss = FocalLoss(alpha=0.25, gamma=2.0) # 可调整alpha和gamma 然后在forward函数中计算分类损失: # 计算分类损失 # 假设pred_dist是分类的logits,且fg_mask用于筛选前景样本 # 可能需要调整pred_dist和target_scores的维度 # 例如,只计算前景样本的分类损失? # 或者,所有样本都参与分类损失计算? # 这里需要明确哪些样本参与分类损失计算,可能需要fg_mask来筛选 # 例如,如果只有前景样本有分类损失: pred_cls = pred_dist[fg_mask] target_cls = target_scores[fg_mask] loss_cls = self.focal_loss(pred_cls, target_cls).sum() / target_scores_sum # 归一化 或者,如果所有样本都参与分类损失: loss_cls = self.focal_loss(pred_dist, target_scores).sum() / target_scores_sum 这取决于模型的具体实现,需要用户根据实际情况调整。 假设在目标检测中,通常只有前景样本(fg_mask)参与分类损失的计算,那么可能需要使用fg_mask来筛选预测和目标。 例如: # 分类损失仅计算前景样本 pred_cls = pred_dist[fg_mask] target_cls = target_scores[fg_mask] if pred_cls.numel() == 0: # 避免无前景样本时报错 loss_cls = torch.tensor(0.0, device=pred_dist.device) else: loss_cls = self.focal_loss(pred_cls, target_cls).sum() / target_scores_sum 这样,分类损失仅在前景样本存在时计算,避免除以零。 此外,需要确保target_scores的格式正确,比如是否是one-hot编码,或者是否已经是概率形式。Focal Loss通常用于二分类或多分类中的每个类别的二分类问题,使用sigmoid而不是softmax,因此每个类别独立计算。 综上所述,用户需要在loss.py中实现Focal Loss,并在分类损失计算部分使用它,同时回归损失已经通过Alpha-IoU优化。这样,分类损失和回归损失都能得到有效减小,缓解类别不平衡问题。</think>在目标检测任务中同时优化分类损失和回归损失,需要分别处理类别不平衡问题和边界框回归精度。以下是分步骤解决方案: --- ### 一、Focal Loss实现(解决分类不平衡) 在`loss.py`中添加Focal Loss类并修改分类损失计算: ```python import torch.nn as nn import torch.nn.functional as F class FocalLoss(nn.Module): def __init__(self, alpha=0.25, gamma=2.0, reduction='sum'): super().__init__() self.alpha = alpha # 正样本权重调节系数 self.gamma = gamma # 难样本聚焦参数 self.reduction = reduction def forward(self, inputs, targets): # 计算二值交叉熵(不自动应用sigmoid) bce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction='none') pt = torch.exp(-bce_loss) # 计算概率p_t focal_loss = self.alpha * (1 - pt) ** self.gamma * bce_loss if self.reduction == 'sum': return focal_loss.sum() elif self.reduction == 'mean': return focal_loss.mean() else: return focal_loss ``` --- ### 二、修改损失计算逻辑 在原有损失函数类中添加Focal Loss并调整损失计算: ```python class YourLossClass: def __init__(self): # 添加Focal Loss初始化 self.focal_loss = FocalLoss(alpha=0.25, gamma=2.0) # 参数可调 def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask): # 1. 计算回归损失(Alpha-IoU) weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1) iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, alpha_iou=True, alpha=3.0) if isinstance(iou, tuple): # 处理多返回值情况 loss_iou = ((1.0 - iou[0]) * iou[1].detach() * weight).sum() / target_scores_sum else: loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum # 2. 计算分类损失(Focal Loss) pred_cls = pred_dist[fg_mask] # 仅计算前景样本 target_cls = target_scores[fg_mask] if pred_cls.numel() > 0: loss_cls = self.focal_loss(pred_cls, target_cls).sum() / target_scores_sum else: # 避免无前景样本时除零 loss_cls = torch.tensor(0.0, device=pred_dist.device) # 3. 总损失组合 total_loss = loss_iou + loss_cls return total_loss, loss_iou.detach(), loss_cls.detach() ``` --- ### 三、参数调优建议 1. **Focal Loss参数** - `alpha`:控制正样本权重,类别极度不平衡时建议设置为`1/类别数` - `gamma`:调节难易样本权重,通常2.0效果较好,可尝试1.5~3.0 2. **Alpha-IoU参数** - 当前代码已启用`alpha_iou=True, alpha=3.0`,保持默认即可提升回归精度 --- ### 四、效果验证 1. **监控指标** - 观察`cls_loss`和`box_loss`是否同步下降 - 验证集mAP提升说明改进有效 2. **消融实验** - 单独启用Focal Loss或Alpha-IoU对比效果 - 调整参数组合找到最优配置 --- ### 五、补充说明 - **归一化处理**:分类损失除以`target_scores_sum`与回归损失保持量级一致 - **设备兼容性**:使用`.to(pred_dist.device)`确保张量位于相同设备 - **梯度回传**:总损失应保留梯度,分离`loss_iou/loss_cls`仅用于监控 通过上述修改,模型将同时优化分类和定位任务,有效缓解类别不平衡问题。实际训练中需结合学习率策略进行调参。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值