YOLOv11融合[CVPR2024]EMCAD中的特征提取模块及相关改进思路


YOLOv11v10v8使用教程:  YOLOv11入门到入土使用教程

YOLOv11改进汇总贴:YOLOv11及自研模型更新汇总 


《EMCAD: Efficient Multi-scale Convolutional Attention Decoding for Medical Image Segmentation》

一、 模块介绍

        论文链接:https://arxiv.org/pdf/2405.06880

        代码链接:https://github.com/SLDGroup/EMCAD/tree/main

论文速览:

       高效且有效的解码机制在医学图像分割中至关重要,尤其是在计算资源有限的场景中。但是,这些解码机制通常伴随着高昂的计算成本。为了解决这个问题,我们推出了 EMCAD,这是一种新的高效多尺度卷积注意力解码器,旨在优化性能和计算效率。EMCAD 利用独特的多尺度深度卷积块,通过多尺度卷积显著增强特征图。EMCAD 还采用了通道、空间和分组(大核)门控注意力机制,这些机制在捕获复杂的空间关系时非常有效,同时专注于突出区域。通过采用分组和深度卷积,EMCAD 非常高效且扩展性好(例如,使用标准编码器时只需要 1.91M 参数和 0.381G FLOP)。我们对属于 6 个医学图像分割任务的 12 个数据集进行了严格评估,结果表明,EMCAD 实现了最先进的 (SOTA) 性能,#Params 和 #FLOPs 分别减少了 79.4% 和 80.3%。此外,EMCAD 对不同编码器的适应性和跨分割任务的多功能性进一步确立了 EMCAD 作为一种有前途的工具,推动该领域朝着更高效、更准确的医学影像分析方向发展。

总结:作者提出一种医学图像分割模型,模型中包含特征提取模块和高效的上采样模块,本文更新特征提取模块MSDC, MSCB与LGAG。


⭐⭐本文二创模块仅更新于付费群中,往期免费教程可看下方链接⭐⭐

YOLOv11及自研模型更新汇总(含免费教程)文章浏览阅读366次,点赞3次,收藏4次。群文件2024/11/08日更新。,群文件2024/11/08日更新。_yolo11部署自己的数据集https://xy2668825911.blog.csdn.net/article/details/143633356

⭐⭐付费项目简介:融合上百种顶刊顶会模块的YOLO项目仅119(赠百种改进的v9),此外含自研模型与本文模块融合进行二创三创,最快1-2周完成小论文改进实验,代码每周更新(上周更新超20+二创模块),欢迎QQ:2668825911(或点击下方小卡片扫二维码)加我了解。⭐⭐

⭐⭐本项目并非简单的模块插入,平均每个文章对应4-6个二创或自研融合模块,有效果即可写论文或三创。本文项目使用ultralytics框架,兼容YOLOv3\5\6\8\9\10\world与RT-DETR。⭐⭐

        已进群小伙伴可以先用下文二创及自研模块在自己的数据集上测试,有效果再进行模块结构分析或继续改进。


二、二创融合模块

2.1 相关二创模块及所需参数

        该模块可如图加入到C2f、C3、C3K2与自研等模块中,代码见群文件,所需参数如下。

C2f-变式模块 所需参数:(c1, c2, n, shortcut, g, e)

C3-变式模块 所需参数:(c1, c2, n, shortcut, g, e)

C3k2-变式模块 所需参数:(c1, c2, n, c3k, e, g, shortcut)

RCRep2A及变式模块 所需参数:(c1, c2, shortcut, e)

2.2更改yaml文件 (以自研模型为例)

yam文件解读:YOLO系列 “.yaml“文件解读_yolo yaml文件-CSDN博客

       打开更改ultralytics/cfg/models/11路径下的YOLOv11.yaml文件,替换原有模块。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy,  技术指导QQ:2668825911⭐⭐

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 377 layers, 2,249,525 parameters, 2,249,509 gradients, 8.7 GFLOPs/258 layers, 2,219,405 parameters, 0 gradients, 8.5 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 377 layers, 8,082,389 parameters, 8,082,373 gradients, 29.8 GFLOPs/258 layers, 7,972,885 parameters, 0 gradients, 29.2 GFLOPs
  m: [0.50, 1.00, 512] # summary:  377 layers, 20,370,221 parameters, 20,370,205 gradients, 103.0 GFLOPs/258 layers, 20,153,773 parameters, 0 gradients, 101.2 GFLOPs
  l: [1.00, 1.00, 512] # summary: 521 layers, 23,648,717 parameters, 23,648,701 gradients, 124.5 GFLOPs/330 layers, 23,226,989 parameters, 0 gradients, 121.2 GFLOPs
  x: [1.00, 1.50, 512] # summary: 521 layers, 53,125,237 parameters, 53,125,221 gradients, 278.9 GFLOPs/330 layers, 52,191,589 parameters, 0 gradients, 272.1 GFLOPs

#  n: [0.33, 0.25, 1024]
#  s: [0.50, 0.50, 1024]
#  m: [0.67, 0.75, 768]
#  l: [1.00, 1.00, 512]
#  x: [1.00, 1.25, 512]
# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 1, MSCB, [128]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 4, RCRep2A, [256, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 4, RCRep2A, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, RCRep2A, [1024, True]]
  - [-1, 1, SPPF_WD, [1024, 7]] # 9

# YOLO11n head
head:
  - [[3, 5, 7], 1, align_3In, [256, 1]] # 10
  - [[4, 6, 9], 1, align_3In, [256, 1]] # 11

  - [[-1, -2], 1, Concat, [1]] #12  cat

  - [-1, 1, RepVGGBlocks, []] #13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]] #14
  - [[-1, 4], 1, Concat, [1]] #15 cat

  - [-1, 1, Conv, [256, 3]] # 16
  - [13, 1, Conv, [512, 3]] #17
  - [13, 1, Conv, [1024, 3, 2]] #18

  - [[16, 17, 18], 1, Detect, [nc]] # Detect(P3, P4, P5)



# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy,  技术指导QQ:2668825911⭐⭐


 2.3 修改train.py文件

       创建Train脚本用于训练。

from ultralytics.models import YOLO
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'

if __name__ == '__main__':
    model = YOLO(model='ultralytics/cfg/models/xy_YOLO/xy_yolov1-ConvNeXt.yaml')
    # model = YOLO(model='ultralytics/cfg/models/11/yolo11l.yaml')
    model.train(data='./datasets/data.yaml', epochs=1, batch=1, device='0', imgsz=320, workers=1, cache=False,
                amp=True, mosaic=False, project='run/train', name='exp',)

         在train.py脚本中填入修改好的yaml路径,运行即可训练,数据集创建教程见下方链接。

YOLOv11入门到入土使用教程(含结构图)_yolov11使用教程-CSDN博客


### 关于CVPR 2024会议中的EMCAD主题 CVPR(计算机视觉和模式识别会议)主要关注计算机视觉及其应用领域,而EMCAD(电磁兼容性和天线设计)通常属于电气工程范畴。因此,在CVPR会议上专门针对EMCAD的主题较少见[^1]。 然而,随着技术的发展,交叉学科的研究逐渐增多。某些涉及图像处理、传感器融合以及无线通信的技术可能间接关联到EMCAD方面的工作。例如: - **多模态感知**:利用不同类型的传感器获取环境信息,其中一些传感器可能会涉及到射频信号的接收与发射,进而牵涉到电磁兼容性问题。 - **自动驾驶车辆**:这类研究不仅依赖摄像头等光学设备,还需要雷达和其他基于无线电波的探测手段,这些都离不开良好的电磁兼容设计来确保系统的稳定运行。 对于希望了解更具体的EMCAD相关内容,建议查阅IEEE Transactions on Electromagnetic Compatibility 或者Antennas and Propagation Society International Symposium (APSURSI)等相关专业期刊和会议论文集,因为这些都是专注于电磁学及天线设计的专业出版物[^3]。 如果确实存在对CVPR中有关联性的特定话题感兴趣的情况,则可以考虑探索如下方向: - 结合机器学习算法优化天线阵列的设计参数; - 利用电磁仿真数据训练神经网络模型预测干扰源位置或强度分布; ```python # 示例代码展示如何通过Python调用API查询学术文献数据库 import requests def search_papers(keyword, year=2024): url = f"https://api.example.com/paper?query={keyword}&year={year}" response = requests.get(url) return response.json() papers = search_papers('EMCAD CVPR') print(papers) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值