[Resolved] 偏导问题

此问题来源于模糊C均值聚类的推导过程


符号定义: {xi,i=1,2,,n} 是n个样本组成的样本集合, c 为预定的类别数目,μi,i=1,2,,c每个聚类的中心, μj(xi) 是第 i 个样本对于第j类的隶属度函数,且其满足如下关系式:

j=1cμj(xi)=1i=1,2,,c(1)

用隶属度函数定义的聚类损失函数可以写为:

Jf=j=1ci=1n[μj(xi)]bxiμj2(2)

其中, b>1 是一个可以控制聚类结果的隶属度程度的常数。

Jf μj(xi) 求偏导,并令偏导结果为0,可得:

μj(xi)=[1/xiμj2]1/(b1)k=1c[1/xiμk2]1/(b1)i=1,2,,nj=1,2,,c(3)

The Question is:

How to get the result (3) from (2) ?

Solution: Thanks to Mr.H

g=j=1cμj(xi)1 ,则原问题可描述为:在 g=0 的条件下, 求 Jf 最小。
使

Jfλg
μj(xi),j=1,2,,c 求偏导。

得:

b[μ1(xi)]b1xiμ12b[μ2(xi)]b1xiμ22b[μc(xi)]b1xiμc2j=1cμj(xi)1=λ=λ=λ=0,i=1,2,,n

即:

λb=[μj(xi)]b1xiμj2,{i=1,2,,nj=1,2,,c(1)

(λb)1/(b1)=μj(xi)[xiμj2]1/(b1),{i=1,2,,nj=1,2,,c(2)

μj(xi)=(λb)1/(b1)[1/xiμj2]1/(b1),{i=1,2,,nj=1,2,,c(3)

而后:

j=1cμj(xi)=1,i=1,2,,c

(3) 变为:

(λb)1/(b1)j=1c[1/xiμj2]1/(b1)=1

(λb)1/(b1)=1j=1c[1/xiμj2]1/(b1)(4)

(4)(2) ,得:

1j=1c[1/xiμj2]1/(b1)=μj(xi)[xiμj2]1/(b1),{i=1,2,,nj=1,2,,c

即:

μj(xi)=[1/xiμj2]1/(b1)k=1c[1/xiμk2]1/(b1),{i=1,2,,nj=1,2,,c

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值