目录
在 Windows 10 上为 GTX 1050 显卡和 CUDA 11.1 配置 CUDA 环境涉及几个步骤,包括安装 NVIDIA 驱动、CUDA 工具包和 cuDNN。以下是详细的步骤:
一、检查系统要求和准备工作
- 操作系统: Windows 10
- 显卡: GTX 1050
- CUDA 版本: 11.1
确保你的系统满足 CUDA 11.1 的要求,并备份重要数据以防万一。
二、安装 NVIDIA 驱动程序
-
下载驱动程序:
- 访问 NVIDIA 驱动下载页面。
- 选择你的显卡型号(GeForce GTX 1050),操作系统(Windows 10),然后点击“搜索”。
- 下载适用于 CUDA 11.1 的最新驱动程序。
-
安装驱动程序:
- 双击下载的驱动程序文件。
- 按照安装向导的指示完成安装。建议选择“自定义安装”并勾选“执行干净安装”以确保清除任何旧驱动程序。
三、下载并安装 CUDA Toolkit 11.1
-
下载 CUDA Toolkit:
- 访问 NVIDIA CUDA Toolkit 下载页面。
- 选择操作系统(Windows),版本(11.1),以及合适的安装包(通常是“exe”安装程序)。
-
安装 CUDA Toolkit:
- 运行下载的安装程序。
- 选择“自定义(高级)”安装,以便选择要安装的组件。确保勾选“CUDA Toolkit”以及“CUDA Samples”。
- 完成安装向导。安装过程中,CUDA 的路径会被自动添加到系统环境变量中。
四、安装 cuDNN
-
下载 cuDNN:
- 访问 NVIDIA cuDNN 下载页面(需要 NVIDIA 开发者账户)。
- 选择与你的 CUDA 版本匹配的 cuDNN 版本(例如 cuDNN 8.0.x for CUDA 11.1)。
-
解压并安装 cuDNN:
- 解压下载的 cuDNN 压缩包。
- 将
bin
文件夹中的cudnn*.dll
文件复制到 CUDA Toolkit 的bin
文件夹(例如C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\bin
)。 - 将
include
文件夹中的cudnn*.h
文件复制到 CUDA Toolkit 的include
文件夹(例如C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\include
)。 - 将
lib
文件夹中的cudnn*.lib
文件复制到 CUDA Toolkit 的lib\x64
文件夹(例如C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\lib\x64
)。
五、验证 cuDNN 是否安装成功(可选)
在安装 cuDNN 后,我们需要确保它能够正确工作。可以通过编写一个简单的程序来测试 cuDNN 是否已成功安装。
步骤:
-
下载 cuDNN 测试示例:
- 您可以从 NVIDIA 的 GitHub 仓库 下载 cuDNN 示例代码。
- 或者,您可以直接使用 CUDA Samples 中的 cuDNN 示例。通常它位于
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\samples\
下。
-
编译 cuDNN 示例:
- 打开命令提示符,并导航到 cuDNN 示例目录(如果是直接使用 CUDA Samples 中的 cuDNN 示例,路径可能为
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\samples\
)。 - 编译示例:
cd <cuDNN样本目录> make
- 打开命令提示符,并导航到 cuDNN 示例目录(如果是直接使用 CUDA Samples 中的 cuDNN 示例,路径可能为
-
运行 cuDNN 测试:
- 在命令行中运行示例程序,确认其能够正常执行。
- 例如,如果您下载了
cudnn_sample
示例,可以运行:cudnn_sample
- 如果看到类似以下的输出,表示 cuDNN 安装成功:
cuDNN: 8.x.x ... Results: PASS
注意事项:
- 如果出现错误或找不到 cuDNN 库,检查以下几点:
- 确保 cuDNN 文件已正确复制到 CUDA 的相应目录。
- 确保环境变量设置正确,并重新启动命令提示符以加载新的环境变量。
六、设置环境变量
确保 CUDA 的路径已正确添加到系统环境变量中:
-
打开环境变量设置:
- 右键点击“此电脑”或“计算机”,选择“属性”。
- 点击“高级系统设置”,然后点击“环境变量”。
-
添加 CUDA 和 cuDNN 的路径:
- 在系统变量中,找到
PATH
变量并选择“编辑”。 - 添加以下路径(假设 CUDA 安装在
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1
):C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\bin C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\libnvvp
- 点击“确定”保存更改。
- 在系统变量中,找到
七、验证安装
-
验证 CUDA 安装:
- 打开命令提示符并运行
nvcc --version
。你应该看到 CUDA 编译器的版本信息,确认 CUDA 已正确安装。
nvcc --version
- 打开命令提示符并运行
-
可以通过运行 CUDA 提供的样本测试,如
deviceQuery
来验证 GPU 是否工作正常:cd "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.7\samples\1_Utilities\deviceQuery" mkdir build && cd build cmake .. make .\deviceQuery
-
验证 cuDNN 安装:
- 在 CUDA 的
bin
文件夹中,确认cudnn*.dll
文件存在。 - 运行 CUDA 示例代码,检查 cuDNN 是否能够正确链接和工作。
- 在 CUDA 的
八、测试 CUDA 环境
你可以使用 NVIDIA 提供的示例代码来测试 CUDA 环境是否正常工作。CUDA Toolkit 通常包含一些示例代码,位于安装目录的 extras\demo_suite
文件夹中。
-
编译示例代码:
- 打开命令提示符并导航到 CUDA 示例代码目录。
- 使用
nvcc
编译示例代码。例如,编译deviceQuery
示例:
cd C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\extras\demo_suite nvcc deviceQuery.cpp -o deviceQuery
-
运行示例代码:
- 运行编译好的示例程序以验证 CUDA 是否正常工作。
deviceQuery
如果一切正常,你应该会看到关于你的 GPU 设备的详细信息。
通过以上步骤,你应该能够在 Windows 10 上成功安装和配置 CUDA 11.1 环境,并为 GTX 1050 显卡做好准备。如果在安装过程中遇到任何问题,建议查看 NVIDIA 的官方文档和论坛以获取更多帮助。