时间序列多步预测的经典方法总结

122 篇文章 36 订阅 ¥59.90 ¥99.00
本文总结了时间序列多步预测的经典方法,包括自回归移动平均模型(ARMA)、长短期记忆网络(LSTM)和卷积神经网络(CNN)。这些方法广泛应用于金融、气象等领域,用于预测未来多个时间步的数值。
摘要由CSDN通过智能技术生成

时间序列多步预测是指根据过去的时间序列数据来预测未来多个时间步的数值。这是一个重要的问题,因为在许多领域,如金融、气象和股票市场分析中,对未来数值的准确预测具有重要的应用价值。在本文中,我们将总结一些经典的时间序列多步预测方法,并提供相应的源代码。

一、自回归移动平均模型(ARMA)
自回归移动平均模型是一种经典的时间序列预测方法。ARMA模型结合了自回归(AR)模型和移动平均(MA)模型的特性。AR模型使用过去时间步的观测值来预测未来的值,而MA模型使用过去时间步的预测误差来预测未来的值。ARMA模型可以通过确定自回归阶数(p)和移动平均阶数(q)来进行建模。

from statsmodels.tsa.arima_model import ARMA

# 创建ARMA模型对象
model = ARMA(data
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值