时间序列多步预测是指根据过去的时间序列数据来预测未来多个时间步的数值。这是一个重要的问题,因为在许多领域,如金融、气象和股票市场分析中,对未来数值的准确预测具有重要的应用价值。在本文中,我们将总结一些经典的时间序列多步预测方法,并提供相应的源代码。
一、自回归移动平均模型(ARMA)
自回归移动平均模型是一种经典的时间序列预测方法。ARMA模型结合了自回归(AR)模型和移动平均(MA)模型的特性。AR模型使用过去时间步的观测值来预测未来的值,而MA模型使用过去时间步的预测误差来预测未来的值。ARMA模型可以通过确定自回归阶数(p)和移动平均阶数(q)来进行建模。
from statsmodels.tsa.arima_model import ARMA
# 创建ARMA模型对象
model = ARMA(data