DL学习笔记【17】nn包中的各位Convolutional layers

用一句喜欢的话开始这篇博文:if you can't explain it simply, you don't understand it well enough.

参考文章:https://github.com/torch/nn/blob/master/doc/convolution.md#nn.VolumetricReplicationPadding

Temporal Modules
用于处理序列信号,如声音,句子(自然语言处理常用)等。会有inputframe(共有多少帧)和inputframesize(一帧有多少维度表示)
kernel都是一维的

TemporalConvolution

简单来说就是kernel是一维的。input tensor中每一个数字对应一个weight。

module = nn.TemporalConvolution(inputFrameSize, outputFrameSize, kW, [dW])
output[t][i] = bias[i]+ sum_j sum_{k=1}^kW weight[i][k][j] * input[dW*(t-1)+k)][j]


kernel是作用于frame上的,即会改变framesize,其他batchsize和inputframe的大小不会变化

nOutputFrame = (nInputFrame - kW) / dW + 1
贴一个简单的例子:
inp=5;  -- dimensionality of one sequence element
outp=1; -- number of derived features for one sequence element
kw=1;   -- kernel only operates on one sequence element per step
dw=1;   -- we step once and go on to the next sequence element

mlp=nn.TemporalConvolution(inp,outp,kw,dw)

x=torch.rand(7,inp) -- a sequence of 7 elements
print(mlp:forward(x))

TemporalMaxPooling
取kernel覆盖数字的最大值
module = nn.TemporalMaxPooling(kW, [dW])

TemporalSubSampling
和convolution有点儿像,只不过一个kernel对应一个weight。而不是一个数字对应一个weight。
module = nn.TemporalSubSampling(inputFrameSize, kW, [dW])
output[t][i] = bias[i] + weight[i] * sum_{k=1}^kW input[dW*(t-1)+k][i]
一个kernel所有数字求和之后✖️一个weight + bias

LookupTable
只知道moduleforward这一部分可以取出module.weight中相对应的行的值组成新的矩阵
并不能理解具体怎么生成这些weight的。。。

TemporalRowConvolution
和TemporalConvolution类似,不过算卷积时不包含深度。

Spatial Modules
应用在二维input上,比如图片

SpatialConvolution
module = nn.SpatialConvolution(nInputPlane, nOutputPlane, kW, kH, [dW], [dH], [padW], [padH])
输入和输出的深度信息,即几层。kernel的宽和高,步长,输入图像的宽和高左右两边补零的数目。

SpatialConvolutionMap
module = nn.SpatialConvolutionMap(connectionMatrix, kW, kH, [dW], [dH])
其中应用full connection table和spatial convolution的效果是一样的
full connection table
table = nn.tables.full(nin,nout)
one to one connection table 是一个像素一个像素对应么
table = nn.tables.oneToOne(n)
random connection table 是随机选择像素对应么
table = nn.tables.random(nin,nout, nto)

SpatialFullConvolution(其实是反卷机)
module = nn.SpatialFullConvolution(nInputPlane, nOutputPlane, kW, kH, [dW], [dH], [padW], [padH], [adjW], [adjH])
输入和输出的深度信息,即几层。kernel的宽和高,步长,输入图像的宽和高左右两边补零的数目,输出图像的宽和高左右两边补零的数目
可以不加bias,使用的语句是:noBias()

SpatialDilatedConvolution(带孔的卷积)
module = nn.SpatialDilatedConvolution(nInputPlane, nOutputPlane, kW, kH, [dW], [dH], [padW], [padH], [dilationW], [dilationH])
输入和输出的深度信息,即几层。kernel的宽和高,步长,输入图像的宽和高左右两边补零的数目,kernel每个像素跳跃多少。

SpatialConvolutionLocal
module = nn.SpatialConvolutionLocal(nInputPlane, nOutputPlane, iW, iH, kW, kH, [dW], [dH], [padW], [padH])
和spatial convolution很像,但是不共享权重
每一个kernel都单独存储权重么,spatial convolution是共享的么?

SpatialLPPooling
module = nn.SpatialLPPooling(nInputPlane, pnorm, kW, kH, [dW], [dH])
计算p范数(以kernel为单位计算么

SpatialSubSampling
module = nn.SpatialSubSampling(nInputPlane, kW, kH, [dW], [dH])
深度不改变。一个kernel所有像素求和之后✖️一个weight + bias。

SpatialMaxPooling
module = nn.SpatialMaxPooling(kW, kH [, dW, dH, padW, padH])
默认是floor,可以通过在后边加:ceil() 和:floor()来改变默认值

SpatialDilatedMaxPooling
module = nn.SpatialDilatedMaxPooling(kW, kH [, dW, dH, padW, padH, dilationW, dilationH])
跳跃步长维dilationw和dilationh,默认是floor,可以通过在后边加:ceil() 和:floor()来改变默认值

SpatialFractionalMaxPooling
module = nn.SpatialFractionalMaxPooling(kW, kH, outW, outH)
--   the output should be the exact size (outH x outW)
OR
module = nn.SpatialFractionalMaxPooling(kW, kH, ratioW, ratioH)
--   the output should be the size (floor(inH x ratioH) x floor(inW x ratioW))
--   ratios are numbers between (0, 1) exclusive
确定输出的宽和高,或者确定输出的宽和高相对于输入宽高的缩放比例

SpatialAveragePooling
module = nn.SpatialAveragePooling(kW, kH [, dW, dH, padW, padH])
和spatialmaxpooling差不多,不过是求平均

SpatialAdaptiveMaxPooling
module = nn.SpatialAdaptiveMaxPooling(W, H)
规定了输出的w和h的max pooling

SpatialAdaptiveAveragePooling
module = nn.SpatialAdaptiveAveragePooling(W, H)
规定了输出的w和h的average pooling

SpatialMaxUnPooling
module = nn.SpatialMaxUnpooling(poolingModule)
是pooling的逆过程么?但是看文中的公式并不是简单补零的形式哎~

SpatialUpSamplingNearest
module = nn.SpatialUpSamplingNearest(scale)
找除完之后位置最近的,公式如下,没有需要学习的参数
output(u,v) = input(floor((u-1)/scale)+1, floor((v-1)/scale)+1)

SpatialUpSamplingBilinear
module = nn.SpatialUpSamplingBilinear(scale)
module = nn.SpatialUpSamplingBilinear({oheight=H, owidth=W})
对应公式如下:
oH = (iH - 1)(scale - 1) + iH
oW = (iW - 1)(scale - 1) + iW
没有需要学习的参数

SpatialZeroPadding
module = nn.SpatialReflectionPadding(padLeft, padRight, padTop, padBottom)
上下左右补零

SpatialReflectionPadding
module = nn.SpatialReflectionPadding(padLeft, padRight, padTop, padBottom)
上下左右补反射边缘的像素

SpatialReplicationPadding
module = nn.SpatialReplicationPadding(padLeft, padRight, padTop, padBottom)
上下左右补复制边缘的像素

SpatialSubtractiveNormalization
module = nn.SpatialSubtractiveNormalization(ninputplane, kernel)
计算kernel内点的加权平均。kernel可以是任意定义的分布,一般高斯和均值较多。

SpatialCrossMapLRN
module = nn.SpatialCrossMapLRN(size [,alpha] [,beta] [,k])
对局部神经元的活动创建竞争机制,使得其中响应比较大的值变得相对更大,并抑制其他反馈较小的神经元,增强了模型的泛化能力
公式:
                          x_f
y_f =  -------------------------------------------------
        (k+(alpha/size)* sum_{l=l1 to l2} (x_l^2))^beta


SpatialBatchNormalization
module = nn.SpatialBatchNormalization(N [,eps] [, momentum] [,affine])
Inception V2学习了VGGNet,用两个3´3的卷积代替5´5的大卷积(用以降低参数量并减轻过拟合),还提出了著名的Batch Normalization(以下简称BN)方法。BN是一个非常有效的正则化方法,可以让大型卷积网络的训练速度加快很多倍,同时收敛后的分类准确率也可以得到大幅提高。BN在用于神经网络某层时,会对每一个mini-batch数据的内部进行标准化(normalization)处理,使输出规范化到N(0,1)的正态分布,减少了Internal Covariate Shift(内部神经元分布的改变)。BN的论文指出,传统的深度神经网络在训练时,每一层的输入的分布都在变化,导致训练变得困难,我们只能使用一个很小的学习速率解决这个问题。而对每一层使用BN之后,我们就可以有效地解决这个问题,学习速率可以增大很多倍,达到之前的准确率所需要的迭代次数只有1/14,训练时间大大缩短。而达到之前的准确率后,可以继续训练,并最终取得远超于Inception V1模型的性能——top-5错误率4.8%,已经优于人眼水平。因为BN某种意义上还起到了正则化的作用,所以可以减少或者取消Dropout,简化网络结构。
公式:
 y =     ( x - mean(x) )
        -------------------- * gamma + beta
       standard-deviation(x)
两种模式:学习参数gamma和beta or 不 
-- with learnable parameters
model = nn.SpatialBatchNormalization(m)
A = torch.randn(b, m, h, w)
C = model:forward(A)  -- C will be of size `b x m x h x w`

-- without learnable parameters
model = nn.SpatialBatchNormalization(m, nil, nil, false)
A = torch.randn(b, m, h, w)
C = model:forward(A)  -- C will be of size `b x m x h x w`

Volumetric Modules
应用在三维关系上,如:视频。
VolumetricConvolution : a 3D convolution over an input video (a sequence of images) ;
VolumetricFullConvolution : a 3D full convolution over an input video (a sequence of images) ;
VolumetricDilatedConvolution : a 3D dilated convolution over an input image ;
VolumetricMaxPooling : a 3D max-pooling operation over an input video.
VolumetricDilatedMaxPooling : a 3D dilated max-pooling operation over an input video ;
VolumetricFractionalMaxPooling : a 3D fractional max-pooling operation over an input image ;
VolumetricAveragePooling : a 3D average-pooling operation over an input video.
VolumetricMaxUnpooling : a 3D max-unpooling operation.
VolumetricReplicationPadding : Pads a volumetric feature map with the value at the edge of the input borders.


在文章最后贴上一个网址(torch和caffe中的BatchNorm层

http://www.cnblogs.com/darkknightzh/p/6015990.html

再来一个很有用的网址

http://wemedia.ifeng.com/9177017/wemedia.shtml

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值