第二章 局部图像描绘子

本文介绍了Harris角点检测器的原理,通过OpenCV库实现图像的角点检测。接着,文章探讨了SIFT(尺度不变特征变换)方法,用于检测和提取图像的关键点以及对应的特征向量。最后,展示了如何使用SIFT进行特征匹配,包括创建暴力匹配器BFMatcher进行描述子匹配,并可视化匹配结果。
摘要由CSDN通过智能技术生成

2.1 Harris角点检测器的原理

 

import cv2
import numpy as np

# 读取图像
img = cv2.imread('1.jpg')

# 转为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 计算Harris角点响应函数
dst = cv2.cornerHarris(gray, 2, 3, 0.04)

# 阈值化响应函数,得到角点
threshold = 0.01 * dst.max()
corners = np.where(dst > threshold)

# 绘制角点
for i in range(len(corners[0])):
    x, y = corners[1][i], corners[0][i]
    cv2.circle(img, (x, y), 5, (0, 0, 255), -1)

# 显示图像
cv2.imshow('Image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

2.2 SIFT(尺度不变特征变换)

import cv2

# 读取图像
img = cv2.imread('1.jpg')

# 创建SIFT对象
sift = cv2.xfeatures2d.SIFT_create()

# 检测图像中的关键点
keypoints = sift.detect(img, None)

# 提取关键点的SIFT特征向量
keypoints, descriptors = sift.compute(img, keypoints)

# 可视化关键点
img = cv2.drawKeypoints(img, keypoints, None)

# 显示图像
cv2.imshow('Image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

2.3 SIFT匹配描述子

10个点

import cv2

# 读取图像1和图像2
img1 = cv2.imread('1.jpg')
img1 = cv2.resize(img1, None, fx=0.5, fy=0.5, interpolation=cv2.INTER_AREA)
img2 = cv2.imread('2.jpg')
img2 = cv2.resize(img2, None, fx=0.5, fy=0.5, interpolation=cv2.INTER_AREA)

# 创建SIFT对象
sift = cv2.xfeatures2d.SIFT_create()

# 检测图像1和图像2中的关键点
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)

# 创建暴力匹配器
bf = cv2.BFMatcher(cv2.NORM_L2, crossCheck=True)

# 匹配图像1和图像2中的特征点
matches = bf.match(des1, des2)

# 根据距离排序,保留前10个匹配点
matches = sorted(matches, key=lambda x: x.distance)[:10]

# 可视化匹配结果
img3 = cv2.drawMatches(img1, kp1, img2, kp2, matches, None, flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS)

# 显示图像
cv2.imshow('Image', img3)
cv2.waitKey(0)
cv2.destroyAllWindows()

 

1000个点

import cv2

# 读取图像1和图像2
img1 = cv2.imread('example1.jpg')
img2 = cv2.imread('example2.jpg')

# 创建SIFT对象
sift = cv2.xfeatures2d.SIFT_create()

# 检测图像1和图像2中的关键点
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)

# 创建暴力匹配器
bf = cv2.BFMatcher(cv2.NORM_L2, crossCheck=True)

# 匹配图像1和图像2中的特征点
matches = bf.match(des1, des2)

# 根据距离排序,保留前10个匹配点
matches = sorted(matches, key=lambda x: x.distance)[:10]

# 可视化匹配结果
img3 = cv2.drawMatches(img1, kp1, img2, kp2, matches, None, flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS)

# 显示图像
cv2.imshow('Image', img3)
cv2.waitKey(0)
cv2.destroyAllWindows()

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值