时间序列分析中的许多方法,如ARMA、ARIMA、Granger因果检验等时序预测和分析方法,都需要时间序列具备平稳性。那么什么是时间序列的平稳性呢?什么序列是平稳的什么是非平稳的?最后再来思考一下为什么这么多时序分析方法都强调时间序列的平稳性呢?
一、平稳性的定义
时间序列的平稳性是指一组时间序列数据看起来平坦,各阶统计特征(如均值、方差、协方差…)不随时间的变化而变化。其数学定义又分为严平稳和宽平稳。
严平稳
给 定 随 机 过 程 X ( t ) , t ∈ T , 如 果 对 任 意 \small 给定随机过程 X(t),t \in T,如果对任意 给定随机过程X(t),t∈T,如果对任意
n ⩾ 1. t 1 , t 2 , . . , t n ∈ T 和 实 数 τ , \small n \geqslant 1. t_1,t_2,..,t_n \in T 和实数 \tau, n⩾1.t1,t2,..,tn∈T和实数τ,
当 t 1 + τ , t 2 + τ , . . . , t n + τ 时 , \small 当t_{1+\tau},t_{2+\tau},...,t_{n+\tau}时, 当t1+τ,t2+τ,...,tn+τ时,
随 机 向 量 ( X ( t 1 ) , X ( t 2 ) , . . . , X ( t n ) ) \small 随机向量(X(t_1),X(t_2),...,X(t_n)) 随机向量(X(t1),X(t2),...,X(tn))
与 ( X ( t 1 + τ ) , X ( t 2 + τ , . . . , X ( t n + τ ) ) ) \small 与(X(t_{1+\tau}),X(t_{2+\tau},...,X(t_{n+\tau}))) 与(X(t1+τ),X(t2+τ,...,X(tn+τ)))
有 相 同 的 联 合 分 布 函 数 , 即 \small 有相同的联合分布函数,即 有相同的联合分布函数,即
F t 1 , t 2 , . . . t n ( x 1 , x 2 , . . . , x m ) = \small F_{t_1,t_2,...t_n}(x_1,x_2,...,x_m)= Ft1,t2,...tn(x1,x2,...,xm)=
F t 1 + τ , t 2 + τ , . . . t n + τ ( x 1 , x 2 , . . . , x m ) \small F_{t_{1+\tau},t_{2+\tau},...t_{n+\tau}}(x_1,x_2,...,x_m) Ft1+τ,t2+τ,...tn+τ(x1,x2,...,xm)
则 称 随 机 过 程 X t , t ∈ T 是 严 平 稳 过 程 . \small 则称随机过程X{t},t \in T 是严平稳过程. 则称随机过程Xt,t∈T是严平稳过程.
简单点说严平稳是一种条件比较苛刻的平稳性定义,它认为只有当序列所有的统计性质都不会随着时间的推移而发生变化时,该序列才能被认为平稳。
宽平稳
假 定 某 个 时 间 序 列 是 由 某 一 随 机