谈谈时间序列的平稳性

时间序列分析中,平稳性是关键概念,涉及ARMA、ARIMA等方法。平稳性分为严平稳和宽平稳,前者要求序列统计特性不变,后者仅要求均值、方差和协方差与时间间隔有关。非平稳时间序列可通过差分转化为平稳序列。白噪声是简单的平稳序列,而非白噪声序列可能需要预处理。平稳性有助于预测未来趋势,而非白噪声序列的预测较为复杂。
摘要由CSDN通过智能技术生成

时间序列分析中的许多方法,如ARMA、ARIMA、Granger因果检验等时序预测和分析方法,都需要时间序列具备平稳性。那么什么是时间序列的平稳性呢?什么序列是平稳的什么是非平稳的?最后再来思考一下为什么这么多时序分析方法都强调时间序列的平稳性呢?

一、平稳性的定义

时间序列的平稳性是指一组时间序列数据看起来平坦,各阶统计特征(如均值、方差、协方差…)不随时间的变化而变化。其数学定义又分为严平稳和宽平稳。

严平稳

给 定 随 机 过 程 X ( t ) , t ∈ T , 如 果 对 任 意 \small 给定随机过程 X(t),t \in T,如果对任意 X(t),tT,
n ⩾ 1. t 1 , t 2 , . . , t n ∈ T 和 实 数 τ , \small n \geqslant 1. t_1,t_2,..,t_n \in T 和实数 \tau, n1.t1,t2,..,tnTτ,
当 t 1 + τ , t 2 + τ , . . . , t n + τ 时 , \small 当t_{1+\tau},t_{2+\tau},...,t_{n+\tau}时, t1+τ,t2+τ,...,tn+τ,
随 机 向 量 ( X ( t 1 ) , X ( t 2 ) , . . . , X ( t n ) ) \small 随机向量(X(t_1),X(t_2),...,X(t_n)) (X(t1),X(t2),...,X(tn))
与 ( X ( t 1 + τ ) , X ( t 2 + τ , . . . , X ( t n + τ ) ) ) \small 与(X(t_{1+\tau}),X(t_{2+\tau},...,X(t_{n+\tau}))) (X(t1+τ),X(t2+τ,...,X(tn+τ)))
有 相 同 的 联 合 分 布 函 数 , 即 \small 有相同的联合分布函数,即 ,
F t 1 , t 2 , . . . t n ( x 1 , x 2 , . . . , x m ) = \small F_{t_1,t_2,...t_n}(x_1,x_2,...,x_m)= Ft1,t2,...tn(x1,x2,...,xm)=
F t 1 + τ , t 2 + τ , . . . t n + τ ( x 1 , x 2 , . . . , x m ) \small F_{t_{1+\tau},t_{2+\tau},...t_{n+\tau}}(x_1,x_2,...,x_m) Ft1+τ,t2+τ,...tn+τ(x1,x2,...,xm)
则 称 随 机 过 程 X t , t ∈ T 是 严 平 稳 过 程 . \small 则称随机过程X{t},t \in T 是严平稳过程. Xt,tT.

简单点说严平稳是一种条件比较苛刻的平稳性定义,它认为只有当序列所有的统计性质都不会随着时间的推移而发生变化时,该序列才能被认为平稳。

宽平稳

假 定 某 个 时 间 序 列 是 由 某 一 随 机

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值