多元函数微分学
基本知识
判断是否可微:
lim x → x 0 , y → y 0 α ρ = △ z − △ x f x ′ ( x 0 , y 0 ) − △ y f y ′ ( x 0 , y 0 ) △ x 2 + △ y 2 是 否 等 于 0 \lim_{x\to x_0,y\to y_0}\frac{\alpha}{\rho}=\frac{\triangle z-\triangle xf_x'(x_0,y_0)-\triangle yf_y'(x_0,y_0)}{\sqrt{\triangle x^2+\triangle y^2}}是否等于0 x→x0,y→y0limρα=△x2+△y2△z−△xfx′(x0,y0)−△yfy′(x0,y0)是否等于0
最根本的原因就是:多元函数的偏导只是垂直和水平这两条线上的,而不是在领域这一坨的,而连续啊,可微啊这些都是在领域这一坨上的,因此出现了差别
所以如果光记能够推出的箭头的话,就是从下往上,像水流一样流上去~
概念(感觉概念题还挺难的)
4.1【先代值后求导】
f ( x , y ) = e x + y [ x 1 3 ⋅ ( y − 1 ) 1 3 + y 1 3 ⋅ ( x − 1 ) 2 3 ] , 则 f x ′ ( 0 , 1 ) 和 f y ′ ( 0 , 1 ) 的 情 况 f(x,y)=e^{x+y}[x^{\frac{1}{3}}\cdot (y-1)^{\frac{1}{3}}+y^{\frac{1}{3}}\cdot (x-1)^{\frac{2}{3}}],则f'_x(0,1)和f'_y(0,1)的情况 f(x,y)=ex+y[x31⋅(y−1)31+y31⋅(x−1)32],则fx′(0,1)和fy′(0,1)的情况
A.两个偏导数都不存在
B. f x ′ ( 0 , 1 ) 不 存 在 , f y ′ ( 0 , 1 ) = 4 3 e f'_x(0,1)不存在,f'_y(0,1)=\frac{4}{3}e fx′(0,1)不存在,fy′(0,1)=34e
C. f x ′ ( 0 , 1 ) = e 3 , f y ′ ( 0 , 1 ) = 4 3 e f'_x(0,1)=\frac{e}{3},f'_y(0,1)=\frac{4}{3}e fx′(0,1)=3e,fy′(0,1)=34e
D. f x ′ ( 0 , 1 ) 不 存 在 , f y ′ ( 0 , 1 ) 不 存 在 f'_x(0,1)不存在,f'_y(0,1)不存在 fx′(0,1)不存在,fy′(0,1)不存在
先代值后求导
算 f x ′ ( 0 , 1 ) f_x'(0,1) fx′(0,1)的时候,先求出 f ( x , 1 ) f(x,1) f(x,1),然后再对x求导,再代x的值
答案是C
4.2
z = f ( x , y ) = ∣ x y ∣ , 在 ( 0 , 0 ) 点 z=f(x,y)=\sqrt{|xy|},在(0,0)点 z=f(x,y)=∣xy∣,在(0,0)点
A.连续,但偏导数不存在
B.偏导数存在,但不可微
C.可微
D.偏导数存在且连续
看可不可微:
α ρ = △ z − △ x f x ′ ( 0 , 0 ) − △ y f y ′ ( 0 , 0 ) ρ = ∣ △ x △ y ∣ △ x 2 + △ y 2 = 1 2 \frac{\alpha}{\rho}=\frac{\triangle z-\triangle xf_x'(0,0)-\triangle yf_y'(0,0)}{\rho}=\frac{\sqrt{|\triangle x\triangle y|}}{\sqrt{\triangle x^2+\triangle y^2}}=\frac{1}{\sqrt{2}} ρα=ρ△z−△xfx′(0,0)−△yfy′(0,0)=△x2+△y2∣△x△y∣=21不等于0,所以不可微
再看偏导数连不连续:
仿照4.3题的样子
f x ′ ( x , 0 ) = f y ′ ( 0 , y ) = 0 , 且 在 f x ′ ( 0 , 0 ) = f y ′ ( 0 , 0 ) = 0 f_x'(x,0)=f_y'(0,y)=0,且在f_x'(0,0)=f_y'(0,0)=0 fx′(x,0)=fy′(0,y)=0,且在fx′(0,0)=fy′(0,0)=0
所以应该是连续的啊,为啥不选D喃???
4.3
f ( x , y ) = x 2 y 3 , 在 点 ( 0 , 0 ) 处 : f(x,y)=\sqrt[3]{x^2y},在点(0,0)处: f(x,y)=3x2y,在点(0,0)处:
(1)是否连续,说明理由
lim ( x , y ) → ( 0 , 0 ) f ( x , y ) = lim ( x , y ) → ( 0 , 0 ) x 2 3 ⋅ lim ( x , y ) → ( 0 , 0 ) y 3 = 0 = f ( 0 , 0 ) ⇒ 连 续 \lim_{(x,y)\to(0,0)}f(x,y)=\lim_{(x,y)\to(0,0)}\sqrt[3]{x^2}\cdot \lim_{(x,y)\to(0,0)}\sqrt[3]{y}=0=f(0,0)\Rightarrow 连续 (x,y)→(0,0)limf(x,y)=(x,y)→(0,0)lim3x2⋅(x,y)→(0,0)lim3y=0=f(0,0)⇒连续
(2)偏导数是否存在?
∵ f ( x , 0 ) = f ( 0 , y ) = 0 恒 成 立 \because f(x,0)=f(0,y)=0恒成立 ∵f(x,0)=f(0,y)=0恒成立
∴ f ′ ( x , 0 ) = f ′ ( 0 , y ) = 0 ⇒ f ′ ( 0 , 0 ) = f ′ ( 0 , 0 ) = 0 所 以 存 在 \therefore f'(x,0)=f'(0,y)=0\Rightarrow f'(0,0)=f'(0,0)=0所以存在 ∴f′(x,0)=f′(0,y)=0⇒f′(0,0)=f′(0,0)=0所以存在
(3)是否可微
感觉就只会判断可不可微QAQ,就这个有点套路
α ρ = △ x 2 △ y 3 − 0 ⋅ △ x − 0 ⋅ △ y − f ( 0 , 0 ) △ x 2 + △ y 2 = 1 2 所 以 不 可 微 \frac{\alpha}{\rho}=\frac{\sqrt[3]{\triangle x^2\triangle y}-0\cdot\triangle x-0\cdot\triangle y-f(0,0)}{\sqrt{\triangle x^2+\triangle y^2}}=\frac{1}{\sqrt{2}}所以不可微 ρα=△x2+△y23△x2△y−0⋅△x−0⋅△y−f(0,0)=21所以不可微
4.4(打星)
讨 论 f ( x , y ) = { x 2 y 2 ( x 2 + y 2 ) 3 2 , ( x , y ) 不 等 于 ( 0 , 0 ) 0 , ( x , y ) = ( 0 , 0 ) g ( x , y ) = { ( x 2 + y 2 ) s i n 1 x 2 + y 2 , ( x , y ) 不 等 于 ( 0 , 0 ) 0 , ( x , y ) = ( 0 , 0 ) 在 ( 0 , 0 ) 点 的 讨论f(x,y)=\left\{\begin{matrix} \frac{x^2y^2}{(x^2+y^2)^{\frac{3}{2}}},(x,y)不等于(0,0)\\ \\ 0,(x,y)=(0,0) \end{matrix}\right.g(x,y)=\left\{\begin{matrix} (x^2+y^2)sin\frac{1}{x^2+y^2},(x,y)不等于(0,0)\\ \\ 0,(x,y)=(0,0) \end{matrix}\right.在(0,0)点的 讨论f(x,y)=⎩⎪⎨⎪⎧(x2+y2)23x2y2,(x,y)不等于(0,0)0,(x,y)=(0,0)g(x,y)=⎩⎨⎧(x2+y2)sinx2+y21,(x,y)不等于(0,0)0,(x,y)=(0,0)在(0,0)点的
(1)偏导数存在性
仿 照 上 面 的 题 来 说 明 ∵ f ( x , 0 ) = f ( 0 , y ) = 0 ⇒ f ′ ( x , 0 ) = f ′ ( 0 , y ) = 0 ⇒ f ′ ( 0 , 0 ) = f ′ ( 0 , 0 ) = 0 所 以 存 在 仿照上面的题来说明\because f(x,0)=f(0,y)=0\Rightarrow f'(x,0)=f'(0,y)=0\Rightarrow f'(0,0)=f'(0,0)=0所以存在 仿照上面的题来说明∵f(x,0)=f(0,y)=0⇒f′(x,0)=f′(0,y)=0⇒f′(0,0)=f′(0,0)=0所以存在
(2)函数的连续性
(3)方向导数的存在性
这个还是头一次见呢, ( x 0 , y 0 ) (x_0,y_0) (x0,y0)这一点的方向导数的定义:
∂ f ∂ l = lim t → 0 + f ( x 0 + t c o s α , y 0 + t c o s β ) − f ( x 0 , y 0 ) t \frac{\partial f}{\partial l}=\lim_{t\to0^+}\frac{f(x_0+tcos\alpha,y_0+tcos\beta)-f(x_0,y_0)}{t} ∂l∂f=t→0+limtf(x0+tcosα,y0+tcosβ)−f(x0,y0)
来分析一波怎么来的
正常的方向导数是 ∂ f ∂ l = ∂ f ∂ x c o s α + ∂ f ∂ y c o s β \frac{\partial f}{\partial l}=\frac{\partial f}{\partial x}cos\alpha+\frac{\partial f}{\partial y}cos\beta ∂l∂f=∂x∂fcosα+∂y∂fcosβ
∂ f ∂ l = lim t → 0 + f ( x 0 + t c o s α , y 0 + t c o s β ) − f ( x 0 , y 0 ) t = f x ′ ( x 0 , y 0 ) t c o s α + f y ′ ( x 0 , y 0 ) t c o s β t = f x ′ ( x 0 , y 0 ) c o s α + + f y ′ ( x 0 , y 0 ) c o s β 就 跟 上 面 一 样 了 \frac{\partial f}{\partial l}=\lim_{t\to0^+}\frac{f(x_0+tcos\alpha,y_0+tcos\beta)-f(x_0,y_0)}{t}\\ =\frac{f_x'(x_0,y_0)tcos\alpha+f_y'(x_0,y_0)tcos\beta}{t}\\ =f_x'(x_0,y_0)cos\alpha++f_y'(x_0,y_0)cos\beta就跟上面一样了 ∂l∂f=t→0+limtf(x0+tcosα,y0+tcosβ)−f(x0,y0)=tfx′(x0,y0)tcosα+fy′(x0,y0)tcosβ=fx′(x0,y0)cosα++fy′(x0,y0)cosβ就跟上面一样了
所以我们用这个公式来看方向导数存不存在
∂ f ∂ l = lim t → 0 + f ( 0 + t c o s α , 0 + t c o s β ) − f ( 0 , 0 ) t 因 为 c o s 2 α + c o s 2 β = 1 , 所 以 带 进 去 = c o s 2 α ⋅ c o s 2 β ⇒ 存 在 \frac{\partial f}{\partial l}=\lim_{t\to0^+}\frac{f(0+tcos\alpha,0+tcos\beta)-f(0,0)}{t}\\ 因为cos^2\alpha+cos^2\beta=1,\\ 所以带进去=cos^2\alpha\cdot cos^2\beta\Rightarrow 存在 ∂l∂f=limt→0+tf(0+tcosα,0+tcosβ)−f(0,0)因为cos2α+cos2β=1,所以带进去=cos2α⋅cos2β⇒存在
(4)函数的可微性
嗯~终于来可微了,套公式
α ρ = △ x 2 △ y 2 ( △ x 2 + △ y 2 ) 3 2 △ x 2 + △ y 2 = △ x 2 △ y 2 ( △ x 2 + △ y 2 ) 2 \frac{\alpha}{\rho}=\frac{\frac{\triangle x^2\triangle y^2}{(\triangle x^2+\triangle y^2)^{\frac{3}{2}}}}{\sqrt{\triangle x^2+\triangle y^2}}=\frac{\triangle x^2\triangle y^2}{(\triangle x^2+\triangle y^2)^2} ρα=△x2+△y2(△x2+△y2)23△x2△y2=(△x2+△y2)2△x2△y2
分子4次方,分母也是4次方,不好说得,所以选择 y = k x y=kx y=kx来趋近得到 k 2 ( 1 + k 2 ) 2 \frac{k^2}{(1+k^2)^2} (1+k2)2k2,所以不可微
在看 g ( x , y ) 喃 g(x,y)喃 g(x,y)喃
α ρ = ( △ x 2 + △ y 2 ) s i n 1 △ x 2 + △ y 2 △ x 2 + △ y 2 = 0 所 以 可 微 \frac{\alpha}{\rho}=\frac{(\triangle x^2+\triangle y^2)sin\frac{1}{\triangle x^2+\triangle y^2}}{\sqrt{\triangle x^2+\triangle y^2}}=0所以可微 ρα=△x2+△y2(△x2+△y2)sin△x2+△y21=0所以可微
而可微是最全的了,什么连续啊,偏导啊,啥都有,所以上面3个都存在
4.9
f ( x , y ) 的 一 阶 偏 导 数 连 续 , 在 ( 1 , 0 ) 的 邻 域 内 有 : f ( x , y ) = 1 − x − 2 y + O ( ( x − 1 ) 2 + y 2 ) , z ( x , y ) = f ( e y , x + y ) , 求 d [ z ( x , y ) ] ∣ ( 0 , 0 ) f(x,y)的一阶偏导数连续,在(1,0)的邻域内有:\\ f(x,y)=1-x-2y+O(\sqrt{(x-1)^2+y^2}),z(x,y)=f(e^y,x+y),\\ 求d[z(x,y)]|_{(0,0)} f(x,y)的一阶偏导数连续,在(1,0)的邻域内有:f(x,y)=1−x−2y+O((x−1)2+y2),z(x,y)=f(ey,x+y),求d[z(x,y)]∣(0,0)
首先求的是个啥我都没反应过来,原来是要求全微分啊~
d [ z ( x , y ) ] = ∂ z ∂ x d x + ∂ z ∂ y d y d[z(x,y)]=\frac{\partial z}{\partial x}dx+\frac{\partial z}{\partial y}dy