Matlab毕设系列--说明

### 分数延时滤波器实现方法 分数延时滤波器(Fractional Delay Filter, FDF)用于实现非整数样本延迟,在数字信号处理中有广泛应用。这类滤波器能够精确控制信号的相位特性,适用于多个领域。 #### 基于Farrow结构的分数延时滤波器设计 Farrow结构是一种常用的分数延时滤波器设计方案,其核心在于利用一组固定的FIR子滤波器以及一个可调节参数来动态调整延迟量[^3]。这种架构允许灵活改变延迟时间而不必重新计算整个滤波器系数,提高了实时应用中的适应性和效率。 对于基于Farrow结构的时间同步算法而言,通过特定形式的多项式函数——通常是拉格朗日插值多项式——来进行数据点之间的内插操作,进而完成对输入序列的有效移位[^1]。此过程不仅限于简单的线性变换,而是可以通过配置不同的阶次达到更复杂的非均匀间隔抽样效果。 #### MATLAB与Python代码示例 以下是使用MATLAB和Python两种编程语言分别给出的一个简单版本的分数延时滤波器实现: ##### MATLAB代码 ```matlab function y = fractional_delay(x,delta) % x 是输入向量;delta 表示期望的小数部分延迟 N=length(x); n=0:N-1; y=zeros(size(x)); for k=-floor(-min(n-delta)):ceil(max(n-delta)) h=firpm(8,[0 0.4],[lagrange(k,-2:2)]); y=y+filter(h,1,x).*sinc((k-n)+delta)'; end ``` ##### Python代码 ```python import numpy as np from scipy.signal import firwin, lfilter def lagrange_poly(tau, n_taps): """Compute Lagrange polynomial coefficients.""" taps = [] for i in range(len(n_taps)): product = 1. for j in range(len(n_taps)): if i != j: product *= (tau - n_taps[j]) / float(n_taps[i] - n_taps[j]) taps.append(product) return np.array(taps) def frac_delay_filter(signal, delay): N = len(signal) output_signal = np.zeros_like(signal) # Define the number of FIR filter taps and their positions relative to 'delay' num_taps = [-2, -1, 0, 1, 2] for tap_pos in num_taps: h = firwin(numtaps=len(num_taps), cutoff=[0.4], window='hamming') shifted_sig = np.roll(signal, int(round(delay)) + tap_pos) poly_coefficients = lagrange_poly(delay % 1., num_taps) filtered_output = lfilter(poly_coefficients * h, [1], shifted_sig) output_signal += filtered_output[:len(output_signal)] return output_signal ``` 上述代码片段展示了如何构建一个基本的分数延时滤波器,并将其应用于给定的一维离散时间序列上。需要注意的是实际应用场景下还需要考虑更多因素如边界条件处理、数值稳定性等问题。
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海神之光

有机会获得赠送范围1份代码

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值