【风速预测】基于matlab EMD+模拟退火算法优化DBN风速预测【含Matlab源码 JQ003期】

💥💥💥💥💥💥💞💞💞💞💞💞💞💞欢迎来到海神之光博客之家💞💞💞💞💞💞💞💞💥💥💥💥💥💥
在这里插入图片描述
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进;
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式

⛳️座右铭:行百里者,半于九十。
更多Matlab智能算法神经网络预测与分类仿真内容点击👇
Matlab神经网络预测与分类 (进阶版)
付费专栏Matlab智能算法神经网络预测与分类(中级版)
付费专栏Matlab智能算法神经网络预测与分类(初级版)

⛳️关注CSDN海神之光,更多资源等你来!!

⛄一、DBN算法简介

DBN是深度学习方法中的一种常用模型,是一种融合了深度学习与特征学习的神经网络。DBN网络结构是由若干层受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)和一层BP组成的一种深层神经网络。DBN结构如图2所示。
在这里插入图片描述
在这里插入图片描述
图2 DBN结构示意图
DBN训练过程由预训练和微调构成,数据首先由输入层输入到网络结构中,生成一个向量V,通过权重值W传给隐藏层得到H,单独无监督训练每一层RBM网络,确保特征向量映射到不同特征空间,最后由BP网络接收RBM的输出特征向量作为它的输入特征向量,反向传播网络自顶向下将错误信息传播给每一层RBM,微调整个DBN网络,进行有监督的训练,最终得到网络中的权重以及偏置。

1 受限玻尔兹曼机
RBM是1986年由Smolensky提出的一种可通过输入数据集学习概率分布的随机生成神经网络。RBM模型是包含一种可观察变量(v)和单层隐藏变量(h)的无向概率图,RBM只有两层神经元,它是一个二分图,两层间的单元相互连接,层内的任何单元之间不存在连接。RBM结构见图3。
在这里插入图片描述
图3 RBM结构示意图
RBM是一种基于能量的模型,任何两个连接的神经元之间都有一个权重W来表示连接权重Wij, Wij表示可观察变量单元i和隐藏变量单元j之间的权重,观察层与隐藏层分别用v和h来表示,则连接权重与偏差决定的观察层变量v和隐藏层变量h的联合配置能量如下:
在这里插入图片描述
其中ai是可观察层单元的偏置,bj是隐藏层单元的偏置,Wij为可观察层单元与隐藏层单元之间的连接权重,基于能量函数的可观察层和隐藏层可以得到概率分布:
在这里插入图片描述
其中Z为配分函数的归一化常数,即所有参数下的能量之和,该函数累加所有可观察向量和隐藏向量的可能组合。

RBM中的每层中的神经元只存在两种状态0或1,给定任意层中的各神经元的状态,可以得到可观察层神经元和隐藏层神经元的状态概率如下:
在这里插入图片描述
根据Hinton在2002年提出的对比散度,可知参数的变化规则如下:
在这里插入图片描述
其中,ε是学习率,⟨⋅⟩data表示训练原始数据集的模型定义的分布,⟨⋅⟩recon表示一步重构后模型定义的分布。

⛄二、部分源代码

在这里插入代码片

⛄三、运行结果

在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]方清城.MATLAB R2016a神经网络设计与应用28个案例分析[M].清华大学出版社,2018.

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海神之光

有机会获得赠送范围1份代码

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值