深度学习卷积神经网络重要结构之通道注意力和空间注意力模块

 

#主要原理

 

提出CBAM的作者主要对分类网络和目标检测网络进行了实验,证明了CBAM模块确实是有效的。

以ResNet为例,论文中提供了改造的示意图,如下图所示:

#CMAB模块实现,依据上面原理 


#在ResNet中的每个block中添加了CBAM模块,训练数据来自benchmark ImageNet-1K。检测使用的是Faster R-CNN, Backbone选择的ResNet34,ResNet50, WideResNet18, ResNeXt50等,还跟SE等进行了对比。

#CBAM 结构代码
#通道注意力模块
class ChannelAttention(nn.Module):
    def __init__(self, in_planes, ratio=16):
        super(ChannelAttention, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.max_pool = nn.AdaptiveMaxPool2d(1)

        self.fc1   = nn.Conv2d(in_planes, in_planes // 16, 1, bias=False)
        self.relu1 = nn.ReLU()
        self.fc2   = nn.Conv2d(in_planes // 16, in_planes, 1, bias=False)

        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
        max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
        out = avg_out + max_out
        return self.sigmoid(out)

#空间注意力模块
class SpatialAttention(nn.Module):
    def __init__(self, kernel_size=7):
        super(SpatialAttention, self).__init__()

        assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
        padding = 3 if kernel_size == 7 else 1

        self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        avg_out = torch.mean(x, dim=1, keepdim=True)
        max_out, _ = torch.max(x, dim=1, keepdim=True)
        x = torch.cat([avg_out, max_out], dim=1)
        x = self.conv1(x)
        return self.sigmoid(x)
#调用方法:其他模块中调用,注意oup是模块输入通道数,严格和你输入到 ChannelAttention模块中的前一个模块或者操作的输出通道数一致,SpatialAttention 没有限制
self.ca = ChannelAttention(oup)
self.sa = SpatialAttention()
#具体实现 ,x表示数据,来自当前层或者某一层数据
x = self.ca(x) * x
x = self.sa(x) * x 
  • 11
    点赞
  • 93
    收藏
    觉得还不错? 一键收藏
  • 10
    评论
ECA-Net是一种基于深度卷积神经网络的高效信道注意力机制。它通过引入自适应的信道注意力模块,有助于网络更好地理解输入特征图中的通道关系,并实现更准确的特征表示。 在传统的卷积神经网络中,每个卷积核都对所有的通道进行处理,无论这些通道是否对任务有用。这种全局处理方式可能导致信息的冗余和噪声的引入。ECA-Net通过引入信道注意力机制来解决这个问题。 信道注意力模块采用一个可学习的全局平均池化操作,通过对每个通道的特征图进行逐通道的池化,获取每个通道重要程度。然后,通过一个全连接层对每个通道重要程度进行学习,以获取一个权重向量。 接下来,通过一个Sigmoid函数对权重向量进行归一化,得到一个范围在0到1之间的注意力权重向量。最后,将注意力权重向量与特征图相乘,以逐通道地加权特征图,实现对通道的筛选。 这种信道注意力的作用可以提高网络在不同任务中的性能。通过在网络中引入ECA-Net模块,可以提升特征图的判别能力,减少冗余信息,并提高网络的泛化能力。此外,ECA-Net还具有较小的计算和参数量,使其在实际应用中更具实用性。 总之,ECA-Net通过引入高效的信道注意力作用,能够提高网络的性能。它通过对每个通道重要程度进行学习和筛选,实现了对特征图的优化,从而提高了网络的特征表示能力和泛化能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值