概率论复习笔记五——大数定律和中心极限定理

一、 背景

随着试验大量重复的进行,一个随机事件出现的频率在某个固定的数的附近摆动,这就是所谓的“频率稳定性”。数学上用中心极限定理和大数定律来描述在一定条件下的大量重复实验。

二、定义

2.1 大数定律定义

ξ 1 , ξ 2 , ⋯   , ξ n , ⋯ \xi_1, \xi_2, \cdots,\xi_n, \cdots ξ1,ξ2,,ξn,是随机变量序列,令 η n = ξ 1 + ξ 2 + ⋯ + ξ n n (1) \eta_n=\frac{\xi_1+\xi_2+\cdots+\xi_n}{n}\tag1 ηn=nξ1+ξ2++ξn(1)
如果存在这样的一个常数序列 a 1 , a 2 , ⋯   , a n , ⋯ a_1, a_2, \cdots, a_n, \cdots a1,a2,,an,,对任意的 ε > 0 \varepsilon\gt0 ε>0,恒有 lim ⁡ n → ∞ P { ∣ η n − a n ∣ < ε } = 1 (2) \lim_{n\to\infty}P\{|\eta_n-a_n|\lt\varepsilon\}=1\tag2 nlimP{ηnan<ε}=1(2)
则称序列 { ξ n } \{\xi_n\} {ξn}服从大数定律

2.2 中心极限定理定义

中心极限定理是说: 样本的平均值约等于总体的平均值。
不管总体是什么分布,任意一个总体的样本平均值都会围绕在总体的整体平均值周围,并且呈正态分布。
这里的整体平均值是指数学期望

假设有独立随机变量序列 ξ 1 , ξ 2 , ⋯   , ξ n , ⋯ \xi_1, \xi_2, \cdots,\xi_n, \cdots ξ1,ξ2,,ξn, E ξ i E\xi_i Eξi D ξ i D\xi_i Dξi存在,令 ζ n = ∑ i = 1 n ξ i − ∑ i = 1 n E ξ i ∑ i = 1 n D ξ i (3) \zeta_n=\frac{\sum\limits_{i=1}^n\xi_i-\sum\limits_{i=1}^nE\xi_i}{\sqrt{\sum\limits_{i=1}^nD\xi_i}}\tag3 ζn=i=1nDξi i=1nξii=1nEξi(3)
如果 lim ⁡ n → ∞ P { ζ n < x } = 1 2 π ∫ − ∞ x e − t 2 / 2   d t (4) \lim_{n\to\infty}P\{\zeta_n\lt x\}=\frac{1}{2\pi}\int_{-\infty}^{x}e^{-t^2/2}\,dt\tag4 nlimP{ζn<x}=2π1xet2/2dt(4)
那么称序列 { ξ n } \{\xi_n\} {ξn}服从中心极限定理。即极限分布是标准正态分布 N ( 0 , 1 ) N(0,1) N(0,1)

三、特例

3.1 辛钦大数定律

ξ 1 , ξ 2 , ⋯   , ξ n , ⋯ \xi_1, \xi_2, \cdots, \xi_n,\cdots ξ1,ξ2,,ξn,是相互独立的随机变量序列,它们服从相同的分布,且具有有限的数学期望 a = E ξ a=E\xi a=Eξ,则对任意的 ε > 0 \varepsilon\gt0 ε>0,有 lim ⁡ n → ∞ P { ∣ 1 n ∑ i = 1 n ξ i − a ∣ < ε } = 1 (5) \lim_{n\to\infty}P\{|\frac{1}{n}\sum\limits_{i=1}^n\xi_i-a|\lt\varepsilon\}=1\tag5 nlimP{n1i=1nξia<ε}=1(5)

3.2 伯努利大数定律

μ n \mu_n μn n n n次伯努利试验中事件 A A A出现的次数,而 p p p是事件 A A A在每次试验中出现的概率,则对任意的 ε > 0 \varepsilon\gt0 ε>0,都有 lim ⁡ n → ∞ P { ∣ μ n n − p ∣ < ε } = 1 (6) \lim_{n\to\infty}P\{|\frac{\mu_n}{n}-p|\lt\varepsilon\}=1\tag6 nlimP{nμnp<ε}=1(6)

直观来看就是,当 n n n足够大时,频率 μ n n \frac{\mu_n}{n} nμn与概率 p p p有较大偏差的概率很小,那么我们便可以通过做试验确定某事件发生的频率并把它作为相应概率的估计,这类方法称为参数估计。参数估计的重要理论基础之一就是大数定律。

3.3 棣莫弗-拉普拉斯极限定理

大数定律只断言了当 n → ∞ n\to\infty n时, μ n n \frac{\mu_n}{n} nμn接近于 p p p,棣莫弗-拉普拉斯极限定理则给出 μ n \mu_n μn的渐进分布的更精确的描述。

μ n \mu_n μn n n n次伯努利试验中事件 A A A出现的次数,根据上面的伯努利大数定律,可以知道,随着 n n n的增大, μ n n \frac{\mu_n}{n} nμn会趋于稳定。为了更好的研究 μ n \mu_n μn的极限行为,可以讨论它的分布 P { μ n < x } P\{\mu_n\lt x\} P{μn<x},由于 E μ n = n p , D μ n = n p q E\mu_n=np, D\mu_n=npq Eμn=np,Dμn=npq,所以对于固定的 x x x讨论 P { μ n < x } P\{\mu_n\lt x\} P{μn<x}的极限不会有多大意义,因为它将趋于 0 0 0,所以通常改为研究“标准化”的随机变量 ζ n = μ n − n p n p q (7) \zeta_n=\frac{\mu_n-np}{\sqrt{npq}}\tag7 ζn=npq μnnp(7)的分布函数 P { ζ n < x } P\{\zeta_n\lt x\} P{ζn<x}的极限行为。而棣莫弗-拉普拉斯极限定理就说明了它的极限分布是正态分布,即 lim ⁡ n → ∞ P { ζ n < x } = 1 2 π ∫ − ∞ x e − t 2 / 2   d t (8) \lim_{n\to\infty}P\{\zeta_n\lt x\}=\frac{1}{2\pi}\int_{-\infty}^{x}e^{-t^2/2}\,dt\tag8 nlimP{ζn<x}=2π1xet2/2dt(8)
从而可以得到 μ n \mu_n μn的渐进分布为 N ( n p , n p q ) N(np, npq) N(np,npq)

  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding="UTF-8"%> <!DOCTYPE html> <html大数定律中心极限定理概率论中的两个重要定理,它们的意义> <head> <meta charset="UTF-8"> <title>Edit User</title> </head> <body> <h1如下: 1. 大数定律:当独立同分布的随机变量的样本数趋近于无>Edit User</h1> <form action="user" method="post"> <input type="hidden" name="action" value穷大时,样本均值趋近于总体均值。这个定理告诉我们,当我们进行大量="update"/> <input type="hidden" name="id" value="<%= request.getAttribute("user").getId() %>"/> <p><label>Username: <input type="text" name="username" value="<%= request.getAttribute("user").getUsername() %>"/></实验或观察时,样本均值会趋近于真实均值,因此我们可以通过实验或观label></p> <p><label>Password: <input type="password" name="password" value="<%= request.getAttribute("user察来对总体进行估计。 2. 中心极限定理:当独立同分布的随机变量").getPassword() %>"/></label></p> <p><label>Email: <input type="email" name="email" value="<的样本数足够大时,样本均值的分布趋近于正态分布。这个定理告%= request.getAttribute("user").getEmail() %>"/></label></p> <p><input type="submit" value="Save"/></p诉我们,当我们进行大量实验或观察时,样本均值的分布会趋近于正态分> </form> <p><a href="user?action=list">Back to List</a></p> </body> </html布,因此我们可以使用正态分布来描述样本均值的分布情况,从而进行统计推> ``` 在这里,我们使用了 JSP 来呈现数据和接收用户的输入。 好了,以上就是断和假设检验等操作。 总的来说,大数定律中心极限定理为我们提供一个基于 MVC 三层架构的 JavaWeb 项目的示例代码。注意,这只是一个简单的示例,实际的项目中可能需要更多的业务逻辑和数据验证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值