§1.6伯努利概型
如果一个试验E只有两个结果A与A ¯ ,把这个试验重复独立地进行n次,所构成的联合试验称为n重伯努利概型,记为E n .
若,P(A)=p,P(A ¯ )=1−p(0<p<1),则n重伯努利概型中,事件A发生k次概率P n (k)为P n (k)=(nk)P k (1−p) n−k ,k=0,1,2,⋯,n.事实上,事件A在指定的k次发生,其余n−k次不发生的概率为p k (1−p) n−k ,而在n次重复独立试验中,恰有k次发生A的个数为(nk)个,所以P n (k)=(nk)p k (1−p) n−k ,k=0,1,2,⋯,n.这个公式称为二项概率公式.
在n重伯努利概型中,事件A至少发生一次的概率为:P n (≥1)=1−P n (0)=1−(1−p) n .
例1.某人向一目标独立射击100次,每次命中概率为0.1,求恰好击中两次和至少击中一次的概率.
解:这是一个100重伯努利概型,p=0.1,设B 1 表示事件恰好击中两次,B 2 表示事件至少击中一次,则P(B 1 )=P 100 (2)=(1002)0.1 2 (1−0.1) (100−2) =0.0016,P 100 (≥1)=1−P 100 (0)=1−(1−0.1) 100 =0.99997
从上例中可以看出,每次射击命中的概率很小,只有0.1,但重复进行下去,几乎肯定能够击中目标.
例2.某车间有10台机床相互独立地运行,设每台机床出故障的概率为0.2,求在同一时刻有3台到5台机器出故障的概率.
解:这是10重伯努利概型,p=0.2,设A i 表示恰有i台机床出现故障,i=3,4,5.则所求概率为,p=P(A 3 +A 4 +A 5 )=P 10 (3)+P 10 (4)+P 10 (5)=(103)0.2 3 (1−0.2) (10−3) +(104)0.2 4 (1−0.2) (10−4) +(105)0.2 5 (1−0.2) (10−5) =0.315
例3.在100件产品中有10件次品,现随机抽取5次,每次取1件,取后放回.求取出2件次品和至少取到一件次品的概率.
解:每次抽取有两种可能结果,即取次品(记为A)或取正品(记为A ¯ ),P(A)=10100 =0.1.因每次取后放回,5次抽取是独立进行的,所以可看成是5重伯努利概型,p=0.1.据二项概率公式,取出2件次品的概率为:P 5 (2)=(52)0.1 2 (1−0.1) 3 =0.0729至少取到一件次品的概率为:P 5 (≥1)=1−P 5 (0)=1−0.9 5 =0.41
例4.已知每枚地对空导弹击中敌机的概率为0.96,问需要发射几枚导弹,才能保证击中敌机的概率大于0.999?
解:设需要发射n枚导弹,p=0.96,由题意,P n (≥1)>0.999,而P n (≥1)=1−P n (0)=1−(1−0.96) n ,于是1−(1−0.96) n >0.999,即有0.04 n <0.001,解得n>log 0.04 0.001=ln0.001ln0.04 =2.15.所以应取n=3,即需要发射3枚导弹.