重复独立事件,伯努利概型(概统1)
概率论与数理统计中的很多内容都是在独立性的前提条件下讨论的,在实际应用中,对于事件的独立性,我们不是根据定义,而是根据事情的实际意义来判断的,根据事件的实际背景来判断事件的独立性,往往并不困难。
独立性
如果事件A与事件B相互独立,那么
P(AB)=P(A)P(B)
P(A-B)=P(A
B¯¯¯¯
B
¯
)=P(A)-P(AB)
换句话说,如果A与B相互独立,
A-B=A-AB=A
B¯¯¯¯
B
¯
直观意义上来说,如果A与B独立, A-B就等于从A中去除AB相交的部分
注意:独立不等于互斥,是两个概念,互斥是A与B没有交集。
独立:P(AB)=P(A)P(B)
互斥:P(AB)=0;
伯努利概型是重复独立试验的一个重要概率模型,其特点是:
1)事件只有发生与不发生两种结果;
2)各次试验中结果A发生的概率都相同,各次试验是相互独立的;
3)n次重复实验。
假设A结果发生的概率为p(0< p < 1),在n重伯努利试验中,事件A恰好发生k次的概率为:
Pn(k)=Cknpk(1−p)n−k P n ( k ) = C n k p k ( 1 − p ) n − k ,k=0,1,2,…n
伯努利概型典型事例:
n次射击,恰好射中/(射不中)k次的概率。每次射击只有射中与射不中两种结果
n次投硬币,恰好k次硬币正面/(反面)的概率,每次都只有正面与反面两种结果
(掷骰子不是伯努利概型,因为每次投掷有6种可能结果)
生产了n件产品,恰好有k件合格/(不合格)的概率,每件产品只有合格不合格两种结果
【典型例题】
【例1】甲乙两人独立地射击同一目标,其命中率分别为0.6和0.5,现已知目标被击中,则它是乙击中的概率为_。
解:
分析,首先是题目要求”它是乙击中的概率“,那么已知结果是目标被击中,那么什么叫做目标被击中?有可能是甲击中,也可能是乙击中,或者两人都击中,这就相当于”AUB”, 所以首先需要算出目标被击中的概率,就是求P(AUB)。然后题目要求”它是乙击中的概率“,那就是说,在已经击中的范围内,在P(AUB)的范围之内,乙击中占的比重是多少?那就是求条件概率: P(B|AUB)
已知目标被击中,并且 P(A)=0.6 , P(B)=0.5
求P(B|AUB)
P(B|AUB)=
P(B)P(AUB)=P(B)P(A)+P(B)−P(AB)=P(B)P(A)+P(B)−P(A)P(B)
P
(
B
)
P
(
A
U
B
)
=
P
(
B
)
P
(
A
)
+
P
(
B
)
−
P
(
A
B
)
=
P
(
B
)
P
(
A
)
+
P
(
B
)
−
P
(
A
)
P
(
B
)
=
0.50.6+0.5−0.6∗0.5=0.50.8=58
0.5
0.6
+
0.5
−
0.6
∗
0.5
=
0.5
0.8
=
5
8
【例2】设0< P(A)< 1,0< P(B)< 1, P(A|B) + P(
A¯¯¯¯
A
¯
|
B¯¯¯¯
B
¯
) = 1,那么下列正确的选项是()。
(A) A与B相互独立
(B) A与B相互对立
(C) A与B互不相容
(D) A与B互不独立
解:
P(A|B)=
P(AB)P(B)
P
(
A
B
)
P
(
B
)
P(
A¯¯¯¯
A
¯
|
B¯¯¯¯
B
¯
) =
P(A¯¯¯¯B¯¯¯¯)P(B)
P
(
A
¯
B
¯
)
P
(
B
)
=
P(AUB¯¯¯¯¯¯¯¯¯¯¯¯)1−P(B)
P
(
A
U
B
¯
)
1
−
P
(
B
)
=
1−P(AUB)1−P(B)
1
−
P
(
A
U
B
)
1
−
P
(
B
)
=
1−P(A)−P(B)+P(AB)1−P(B)
1
−
P
(
A
)
−
P
(
B
)
+
P
(
A
B
)
1
−
P
(
B
)
P(A|B) + P(
A¯¯¯¯
A
¯
|
B¯¯¯¯
B
¯
) = 1
=>
P(AB)P(B)
P
(
A
B
)
P
(
B
)
+
1−P(A)−P(B)+P(AB)1−P(B)
1
−
P
(
A
)
−
P
(
B
)
+
P
(
A
B
)
1
−
P
(
B
)
=1
=>
P(AB)-P(B)P(AB) + P(B)-P(A)P(B)-P(B)P(B)+P(B)P(AB) = P(B)-P(B)P(B)
=>最后剩下
P(AB)-P(A)P(B)=0
P(AB)=P(A)P(B)
因此,A与B相互独立,选择(A)
【例3】设随机事件A与B相互独立,且P(B)=0.5,P(A-B)=0.3,则P(B-A)=( )
(A) 0.1
(B) 0.2
(C) 0.3
(D) 0.4
解:
由独立性的定义得到
P(A-B) ,独立性的直观意义就是A中去除AB相交的部分
因此,P(A-B)=P(A)-P(AB)=P(A)-P(A)P(B) = 0.3
P(B)=0.5,代入上式
P(A)-P(A)*0.5=0.3, => P(A)=0.6
由独立性得到:
P(B-A) = P(B)-P(BA)=P(B)-P(B)P(A) = 0.5-0.5*0.6=0.2
答案选(B)
【例4】
一射手对同一目标独立地进行四次射击,若至少命中一次的概率为
8081
80
81
,则该射手的命中率为_。
解:这是一个4重伯努利试验,
公式
Pn(k)=Cknpk(1−p)n−k
P
n
(
k
)
=
C
n
k
p
k
(
1
−
p
)
n
−
k
,k=0,1,2,…n
至少命中一次 = 1 - 全部不命中=
8081
80
81
那么,全部不命中概率=1-至少命中一次=1-
8081
80
81
=
181
1
81
一次都不命中,套公式
P4(0)=C04p0(1−p)4−0
P
4
(
0
)
=
C
4
0
p
0
(
1
−
p
)
4
−
0
=
181
1
81
=>
(1−p)4
(
1
−
p
)
4
=
181
1
81
=
134
1
3
4
p=
23
2
3
【例5】
一射手对同一目标独立重复地射击,每次射击命中率为p(0< p< 1),则此人第4次射击恰好第2次命中目标的概率为_
(A) 3p(1-p)
2
2
(B) 6p(1-p)
2
2
(C) 3p
2
2
(1-p)
2
2
(D) 6p
2
2
(1-p)
2
2
解:注意此题的题目是考语文:
“第4次射击恰好第2次命中的概率” —-这是一个复合概率的问题 ,
注意, 第4次射击,如果做为第2次命中,那就是一个复合概率,等于说前3次射击已经命中过一次,现在第4次,如果想要再次命中,这个复合概率有多大,相当于
P(第4次射击第2次命中)=P(第1次命中)*P(第2次命中);
P(第一次命中) :就是指前3次射击命中一次,这是一个伯努利重复试验,重复3次命中一次,用公式
P3(1)=C13p1(1−p)2
P
3
(
1
)
=
C
3
1
p
1
(
1
−
p
)
2
P(第2次命中):就是指射击第4次的时候,独立命中的概率,已知等于p
因此,复合概率
P(第4次射击第2次命中) = P 3 3 (1) * P 1(1) 1 ( 1 ) = C 13 3 1 p 1 1 (1-p) 2 2 p = 3p 2 2 (1-p) 2 2
答案:选C
【例6】
假设一厂家生产的每台仪器以概率0.7可以直接出厂,以概率0.3需进一步调试,经调试后以概率0.8可以出厂,以概率0.2定为不合格品不能出厂,现该厂生产了n(n>=2)台仪器(假设各台仪器的生产过程相互独立),求:
1)全部能出厂的概率P(A);
2)其中恰好有两件不能出厂的概率P(B);
3)其中至少有两件不能出厂的概率P(C);
解:
1) 全部能出厂的概率P(A);
全部能出厂=第一次制造就可以出厂+调试后可以出厂
P(A) = 0.7 + 0.3*0.8 =0.94
2) n台中恰好有两台不能出厂的概率P(B);
这是一个伯努利概型,先列出公式:
Pn(k)=Cknpk(1−p)n−k
P
n
(
k
)
=
C
n
k
p
k
(
1
−
p
)
n
−
k
,k=0,1,2,…n
其中,n等于n,k等于2, p = 不能出厂的概率 = 1-0.94=0.06
P(B) = C2n0.062(0.94)n−2 C n 2 0.06 2 ( 0.94 ) n − 2
3)其中至少有两件不能出厂的概率P(C);
其中至少有两件不能出厂= 1 - P(有0件不能出厂) - P(有1件不能出厂)
P(有0件不能出厂) =
C0n0.06(0.94)n−0
C
n
0
0.06
(
0.94
)
n
−
0
=
(0.94)n
(
0.94
)
n
P(有1件不能出厂) =
C1n0.061(0.94)n−1
C
n
1
0.06
1
(
0.94
)
n
−
1
所以
P(C)=1-
(0.94)n
(
0.94
)
n
-
C1n0.06∗(0.94)n−1
C
n
1
0.06
∗
(
0.94
)
n
−
1
======
参考书目:张天德,叶宏 《星火燎原·概率论与数理统计辅导及习题精解》(浙大·第4版)第一章