现代计算机图形学笔记(三)——三角形光栅化

本文介绍了三角形光栅化的过程,包括从[-1,1]^3立方体转换到屏幕坐标,视口变换的矩阵,以及如何判断像素是否在三角形内。三角形因其简单性和作为其他多边形表示的基础在光栅化中广泛应用。通过减少遍历像素的数量,可以优化光栅化算法,降低计算时间。最后提到了光栅化后三角形的锯齿现象和未来的抗锯齿处理。" 111549103,10297271,Mac上Python编辑器输入汉字解决方案,"['Python开发', 'Mac开发环境', '编辑器配置', 'Homebrew']
摘要由CSDN通过智能技术生成

三角形光栅化

经过上节课的MVP(Model, View, Projection transformation)变换之后,所有的物体都会在 [ − 1 , 1 ] 3 [-1,1]^3 [1,1]3的立方体中,本节就来讨论如何将这个 [ − 1 , 1 ] 3 [-1,1]^3 [1,1]3的立方体画在屏幕上(光栅化)。下面我们给出一些定义:

什么是屏幕?

  • 像素的数组
  • 数组的大小:分辨率
  • 一个典型的光栅(raster)成像设备

光栅化==把东西画在屏幕上。对于像素,在本节中,我们将其抽象成一个具有唯一颜色(不会变色)的小方块。像素的坐标都使用 ( x , y ) (x,y) (x,y)表示,其中 x , y x,y x,y都是整数,其取值范围是 ( 0 , 0 ) (0,0) (0,0) ( w i d t h − 1 , h e i g h t − 1 ) (width-1,height-1) (width1,height1)。像素中心的坐标为 ( x + 0.5 , y + 0.5 ) (x+0.5,y+0.5) (x+0.5,y+0.5),而整个屏幕的取值范围是 ( 0 , 0 ) (0,0) (0,0) ( w i d t h , h e i g h t ) (width,height) (width,height)

image-20210329201821857

下面我们讨论如何将 [ − 1 , 1 ] 3 [-1,1]^3 [1,1]3转换到 [ 0 , w i d t h ]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值