2023年认证杯小美赛(B题):工业表面缺陷检测 | 建模解析,鹿鹿学长带队指引全文章代码思路

我是鹿鹿学长,就读于上海交通大学,截至目前已经帮200+人完成了建模与思路的构建的处理了~
让我们来看看认证杯的B题!
在这里插入图片描述
完整内容可以在文章末尾领取!

问题重述

在工业表面缺陷检测领域,我们面临的挑战是通过深度学习模型实现自动检测金属或塑料产品表面的缺陷。我们希望使用Kolektor集团提供的有缺陷的生产物品图像数据集,探讨构建一个适用于表面缺陷检测的数学模型。与之前的研究不同,我们的关注点在于构建一个模型,能够部署在廉价的手持设备上,这些设备具有有限的存储和计算资源。同时,我们希望模型能够在面对数据集中未涵盖的其他缺陷类型时仍然具有相对良好的泛化能力。具体任务包括:

  1. 判定照片中是否存在表面缺陷,并测量模型执行此操作所需的计算量和存储空间。
  2. 自动标记表面缺陷出现的位置或区域,并测量模型所需的计算量、存储空间和标记准确性。
  3. 阐明模型的泛化能力,即模型在遇到数据集中不存在的缺陷类型时仍然可行的原因。

问题一

1. 数据准备:

  • 数据集: 使用Kolektor集团提供的有缺陷的生产物品图像数据集。确保数据集包含正常和有缺陷的样本,并进行适当的标注。

  • 数据预处理: 对图像进行预处理,包括缩放、归一化和数据增强等操作,以提高模型的鲁棒性。确保数据集分为训练集和测试集。

2. 模型选择:

  • 选择轻量级模型: 使用适合移动设备的轻量级深度学习模型,例如MobileNetV2。

  • 模型微调: 使用预训练的轻量级模型,并在表面缺陷检测任务上进行微调,以提高性能。

3. 资源优化:

  • 模型压缩: 使用模型压缩技术,如模型剪枝、量化等,以减少模型的计算量和存储空间要求。

  • 轻量级模型: MobileNetV2是一个轻量级模型,但你仍可以通过进一步减少模型复杂度来优化性能。

4. 模型训练:

  • 定义目标: 将任务定义为二分类问题,即判断图像中是否存在表面缺陷。

  • 损失函数: 使用适当的损失函数,例如二分类交叉熵损失函数。

  • 优化算法: 使用合适的优化算法,例如随机梯度下降(SGD)或 Adam,进行模型训练。

5. 模型评估:

  • 测试集评估: 使用测试集评估模型在表面缺陷检测任务上的性能,包括准确性、召回率和精确度等指标。

6. 计算量和存储空间测量:

  • 模型参数统计: 统计模型的参数数量,以评估存储空间要求。

  • 计算量估计: 使用模型分析工具,如FLOPs(浮点运算数)估计模型的计算量。

7. 结果分析和调整:

  • 结果分析: 分析模型在测试集上的表现,检查是否满足手持设备资源限制。

  • 调整模型: 根据分析结果调整模型结构或参数,以满足资源要求。

8. 部署到手持设备:

  • 转换模型格式: 将训练好的模型转换为适用于手持设备的格式,如ONNX或TensorFlow Lite。

  • 部署验证: 在手持设备上进行模型部署,并验证模型在实际设备上的性能。

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms
from torchvision.models import mobilenet_v2
from torch.utils.data import DataLoader, Dataset

# 定义轻量级模型
class SurfaceDefectModel(nn.Module):
    def __init__(self, num_classes=2):
        super(SurfaceDefectModel, self).__init__()
        self.mobilenet = mobilenet_v2(pretrained=True)
        self.mobilenet.classifier[1] = nn.Linear(1280, num_classes)

    def forward(self, x):
        return self.mobilenet(x)

# 定义数据集和转换
class SurfaceDefectDataset(Dataset):
    # 请根据你的数据集格式进行定义
    # 需要包含图像和对应的标签信息

# 数据预处理和加载器
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
])

# 准备数据
# Replace 'train_data', 'train_labels', 'test_data', 'test_labels' with your actual data
train_dataset = SurfaceDefectDataset(train_data, train_labels, transform=transform)
test_dataset = SurfaceDefectDataset(test_data, test_labels, transform=transform)

train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)

# 初始化轻量级模型
model = SurfaceDefectModel()

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

问题二

任务二是自动标记表面缺陷出现的位置或区域,并测量模型所需的计算量、存储空间和标记准确性。以下是解决这一问题的一般建模思路:

1. 数据准备:

  • 标注数据: 确保训练数据集中包含表面缺陷的图像,并对每个图像标注缺陷的位置信息,通常以边界框的形式。

  • 数据预处理: 对图像进行预处理,包括缩放、归一化和数据增强等操作,以提高模型的鲁棒性。确保数据集分为训练集和测试集。

2. 模型选择:

  • 选择目标检测模型: 使用适合目标检测任务的深度学习模型,例如Faster R-CNN、YOLO、SSD等。

  • 模型微调: 使用预训练的目标检测模型,并在表面缺陷检测任务上进行微调,以提高性能。

3. 资源优化:

  • 模型压缩: 使用模型压缩技术,如模型剪枝、量化等,以减少模型的计算量和存储空间要求。

  • 轻量级模型: 考虑使用轻量级的目标检测模型,以适应手持设备的资源限制。

4. 损失函数和评价指标:

  • 损失函数: 使用适当的目标检测损失函数,例如Faster R-CNN中的分类损失和边界框回归损失。

  • 评价指标: 使用目标检测任务的评价指标,如平均精确度(mAP)等,来评估模型在测试集上的性能。

5. 计算量和存储空间测量:

  • 模型参数统计: 统计模型的参数数量,以评估存储空间要求。

  • 计算量估计: 使用模型分析工具,如FLOPs(浮点运算数)估计模型的计算量。

6. 模型训练:

  • 定义目标: 目标是检测图像中的表面缺陷,并标记缺陷的位置。

  • 损失函数: 使用适当的损失函数,同时考虑分类和位置信息。

  • 优化算法: 使用合适的优化算法,进行模型训练。

7. 模型评估:

  • 测试集评估: 使用测试集评估模型在表面缺陷检测任务上的性能,包括准确性、召回率和精确度等指标。

8. 结果分析和调整:

  • 结果分析: 分析模型在测试集上的表现,检查是否满足手持设备资源限制。

  • 调整模型: 根据分析结果调整模型结构或参数,以满足资源要求。

9. 可解释性:

  • 可解释性考虑: 考虑模型输出的可解释性,确保缺陷位置的标记对操作者具有可理解性。

10. 部署到手持设备:

  • 转换模型格式: 将训练好的模型转换为适用于手持设备的格式,如ONNX或TensorFlow Lite。

  • 部署验证: 在手持设备上进行模型部署,并验证模型在实际设备上的性能。

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms
from torchvision.models.detection import fasterrcnn_resnet50_fpn
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms.functional import to_tensor

# 定义 Faster R-CNN 模型
class SurfaceDefectModel(nn.Module):
    def __init__(self, num_classes=2):
        super(SurfaceDefectModel, self).__init__()
        self.model = fasterrcnn_resnet50_fpn(pretrained=True)
        # 修改输出层,适应你的类别数
        in_features = self.model.roi_heads.box_predictor.cls_score.in_features
        self.model.roi_heads.box_predictor = nn.Linear(in_features, num_classes)

    def forward(self, images, targets=None):
        if self.training and targets is None:
            raise ValueError("In training mode, targets should be passed")

        return self.model(images, targets)

# 定义数据集和转换
class SurfaceDefectDataset(Dataset):
    # 请根据你的数据集格式进行定义
    # 需要包含图像和对应的标签信息

    def __getitem__(self, index):
        # 返回图像和对应的标签
        # 使用 torchvision.transforms.ToTensor() 将图像转换为张量

    def __len__(self):
        # 返回数据集的大小

# 数据预处理和加载器
transform = transforms.Compose([
    transforms.ToTensor(),
])

# 准备数据
# Replace 'train_data', 'train_labels', 'test_data', 'test_labels' with your actual data
train_dataset = SurfaceDefectDataset(train_data, train_labels, transform=transform)
test_dataset = SurfaceDefectDataset(test_data, test_labels, transform=transform)

train_loader = DataLoader(train_dataset, batch_size=2, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=2, shuffle=False)

# 初始化 Faster R-CNN 模型
model = SurfaceDefectModel()

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 训练模型
num_epochs = 10
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

for epoch in range(num_epochs):
    model.train()
    for images, targets in train_loader:
        images = list(image.to(device) for image in images)
        targets = [{k: v.to(device) for k, v in t.items()} for t in targets]

        optimizer.zero_grad()
        loss_dict = model(images, targets)
        loss = sum(loss for loss in loss_dict.values())
        loss.backward()
        optimizer.step()

问题三

任务三是关于模型的泛化能力,即模型在遇到数据集中不存在的缺陷类型时仍然可行的原因。以下是解决这一问题的一般建模思路:

1. 数据集分析:

  • 了解数据集: 对提供的有缺陷的生产物品图像数据集进行详细的分析,了解数据集中存在的缺陷类型和样本分布。

  • 模型训练集选择: 确保模型的训练集包含了尽可能多的缺陷类型,以提高模型对不同缺陷的泛化能力。

2. 数据扩充:

  • 数据增强: 使用数据增强技术,如旋转、翻转、缩放等,来生成更多样化的训练数据,以帮助模型更好地泛化到未见过的情况。

3. 迁移学习:

  • 使用预训练模型: 使用在大规模图像数据上预训练的模型,可以使模型学到通用的特征,提高对新类别的泛化能力。

  • 微调策略: 在训练中使用较小的学习率,以确保在新数据上微调时不会快速丢失之前学到的通用特征。

4. 强化学习:

  • 在线学习: 使用在线学习策略,允许模型在部署后继续学习和适应新的缺陷类型。

5. 模型评估:

  • 交叉验证: 使用交叉验证等技术来评估模型在不同数据子集上的性能,确保泛化能力的稳健性。

6. 不确定性建模:

  • 不确定性估计: 在模型中引入不确定性估计,例如蒙特卡洛推断,以更好地处理未见过的数据。

7. 多任务学习:

  • 多任务学习: 考虑使用多任务学习,让模型同时学习多个相关任务,以提高对新任务的适应能力。

8. 主动学习:

  • 主动学习策略: 使用主动学习策略选择对模型更具挑战性的样本进行标注,以优化模型在未来数据上的表现。

9. 异常检测:

  • 异常检测: 引入异常检测技术,帮助模型在遇到未知缺陷类型时发现异常情况。

10. 模型监控:

  • 实时监控: 在部署后,实时监控模型的性能,并定期进行更新和维护,以适应新的缺陷类型。
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms
from torch.utils.data import DataLoader, Dataset
from torchvision.models import resnet18

# 定义轻量级模型
class SurfaceDefectModel(nn.Module):
    def __init__(self, num_classes=2):
        super(SurfaceDefectModel, self).__init__()
        self.resnet = resnet18(pretrained=True)
        # 修改输出层,适应你的类别数
        in_features = self.resnet.fc.in_features
        self.resnet.fc = nn.Linear(in_features, num_classes)

    def forward(self, x):
        return self.resnet(x)

# 定义数据集和转换
class SurfaceDefectDataset(Dataset):
    # 请根据你的数据集格式进行定义
    # 需要包含图像和对应的标签信息

# 数据预处理和加载器
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
])

# 准备数据
# Replace 'train_data', 'train_labels', 'test_data', 'test_labels' with your actual data
train_dataset = SurfaceDefectDataset(train_data, train_labels, transform=transform)
test_dataset = SurfaceDefectDataset(test_data, test_labels, transform=transform)

train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)

# 初始化轻量级模型
model = SurfaceDefectModel()

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# 训练模型
num_epochs = 10
for epoch in range(num_epochs):
    model.train()
    for inputs, labels in train_loader:
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

    # 在测试集上评估模型
    model.eval()
    with torch.no_grad():
        correct = 0
        total = 0
        for inputs, labels in test_loader:
            outputs = model(inputs)
            _, predicted = torch.max(outputs.data, 1)
            #见完整版

更多内容可以点击下方名片详细了解,让小鹿学长带你冲刺认证杯夺奖之路!
敬请期待我们的努力所做出的工作!记得关注 鹿鹿学长呀!

  • 19
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值