Iterated Tverberg Point-Theory

本文介绍了迭代Tverberg点算法在计算几何中用于寻找近似中心点的应用,特别是在结合机器学习算法生成更优模型时的作用。文章涵盖了定义、定理和算法的详细步骤,包括Radon定理和Carathéodory定理的证明,以及算法如何确保找到具有至少n/2(d+1)^2 Tukey深度的点。
摘要由CSDN通过智能技术生成

Abstract

这个算法是在写实验的时候要执行的,因为阅读的文档和最后的报告都是要用英文写,所以这里就用英文来写了,用的英文句子都比较简单,希望理解起来容易一些。所参照的论文,课件都在博文中说道。大家觉得算法介绍,执行不对的地方欢迎指出来共同探讨。

Iterated Tverberg point algorithm was used to compute an approximate of center point in computational geometry. Here, we use it to combine a set of models computed by machine learning algorithm to a much better model.

Definitions

  1. Closed Halfspace is a set { xRd:axb,aRd,bR} .
  2. The Tukey depth of a point x with respect to a set P is the minimum number of points of P in any halfspace containing x. In the following figure, the depth of the blue point w.r.t the black points set is 1.
    pic:tukeyDepth
  3. A point x is a centerpoint with respect to a set PRd if depth of x is at least nd+1 .
  4. Convex hull of a set A, denoted by conv(A), is the set of all convex combination of points in A. conv(A)={ x|a1,...,aNA,α1,...,αn0;Ni=1αi=1;x=Ni=1αiai.} .

主要参照 http://www.cs.cmu.edu/afs/cs/academic/class/15456-s10/ClassNotes/

Theorems

这个部分的理论证明是后面算法执行必须要用的所以很必要。

  1. Radon Theorem
    Let a1,a2,...,amRd , m d+2 , then there is a partition of {1,…,m} into I and J such that the convex hull of { ai,iI} and { aj,jJ} is nonempty.

    Proof: Denote bi:=(ai,1) . There are md+2 vectors in d+1 dimensional space,
    thus they are linearly dependent. It means that there exists α1,...,αm not all zero
    such that:

    i=1mαibi=0.

    Construct I={ i|αi0} and J={ j|αj<0} .
    As the last coordinate of bi is 1, thus:
    iIαi
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值