笔记整理:项卓怡,浙江大学硕士生,研究方向为蛋白质大模型
链接:https://ieeexplore.ieee.org/document/9815157
1. 动机
靶标之间的分子相互作用预测在许多应用中起着关键作用。其过程是预测未知靶点之间未映射的关系,即分子相互作用预测(MIP),是药物发现中探索靶点候选药物的基本步骤之一。现有的分子相互作用预测方法没有充分利用知识图和分子图,只考虑部分信息。KG-MTL充分利用来自知识图和分子图的信息来预测分子相互作用。它通过使用多任务学习策略,结合了分子图的拓扑结构和相应的KG的生物实体。此外,它采用了一个全面的生物KG,包括药物、疾病、蛋白质、基因、途径和表达。KG-MTL框架由三个主要模块组成。其中DTI模块用于从大规模KG中提取药物和相关实体的特征。CPI模块用于学习分子图和蛋白质序列的两种表示。Shared Unit用于通过组合化合物的分子表示和来自KG的相应药物实体嵌入来在前两个模块之间共享与任务无关的药物特征。
2. 贡献
本文的主要贡献有:
(1)第一次将大规模知识图应用于多任务学习模型,以解决分子相互作用预测问题
(2)KG-MTL同时从知识图和分子图中提取特征;
(3