论文浅尝 | 模式感知参考作为提示改进数据高效的知识图谱构建

文章介绍了Schema-awareReferenceAsPrompt(RAP)方法,一种解决知识图谱构建中语义差距和数据有效性的技术,通过动态利用符号模式和知识作为提示,实现在低资源环境下的出色表现。研究者在事件提取和关系三元组提取任务上进行了实验,展示了方法的优越性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

8da8a5e52e04fdac88149cd42c20485f.png

笔记整理:陈道祺,天津大学硕士生,研究方向为知识图谱

链接:https://dl.acm.org/doi/10.1145/3539618.3591763

1. 动机

知识图谱(KG)作为结构化知识的一种形式,可以为各种实际应用提供后端支持,包括信息检索、问答和推荐系统。知识图构建的目的是从文本中自动检索特定的关系三元组和事件。作者认为目前的方法存在明显局限,其中包括:

自然语言和具有预定义模式的输出结构化知识之间的语义差距,这意味着模型无法充分利用受限制的模板来提取语义知识。

先前的基于提示的学习方法依赖于参数化范式,这种范式可能无法充分发挥预训练语言模型的潜在类比能力。在参数化空间中,模型可能难以学习复杂的例子,并且在有限的训练数据情况下表现不稳定。

为解决以上的问题,作者提出了schema-aware Reference As Prompt (RAP),该方法动态地利用符号模式和从示例中继承的知识作为提示,以增强知识图谱构建的 PLM。具体来说,作者将来自人工标注和弱监督文本的实例与结构化模式进行对齐;这样,符号知识和文本语料就处于同一表征学习空间。然后,作者构建一个统一的参考存储,其中包含从符号模式和训练实例中获得的知识。为了解决利用参考知识的问题,作者提出了基于检索的参考整合,以选择信息丰富的知识作为提示。由于并非所有外部知识都有优势,因此作者利用基于检索的方法,从模式感知参考存储中动态选择与输入序列最相关的知识作为提示。

2. 亮点

RAP的亮点主要包括:

(1)RAP方法能够动态地利用来自人工注释和弱监督数据的模式和知识,作为每个样本的提示。这使得知识图构建可以更灵活地利用模式和知识,而不仅仅依赖于先前固定的提示模板。

(2)实验结果表明,RAP方法在低资源环境下表现出色,尤其是在关系三元组提取和事件提取等知识图构建任务上。这表明它具有提高数据有效性的潜力,尤其在资源受限的情况下。

(3)引入了一种检索增强方法,称为 "Schema-aware Reference As Prompt (RAP)"。这个方法旨在解决当前知识图构建方法的局限性,通过检索与结构化模式相关的知识作为提示,从而提高了数据有效性。

3. 概念及模型

本篇文章主要将RAP 应用于知识图构建的两个代表性任务,即事件提取和关系三元组提取。

事件提取 (Event Extraction):事件提取是从非结构化自然语言文本中自动提取事件的过程,受事件模式的指导。为了澄清这一过程,使用以下术语:

(1)触发词(Trigger Word):最准确地描述事件的词或短语。

(2)事件参数(Event Argument):与事件相关的实体或属性,如时间或使用的工具。

例如,句子 "A man was hacked to death by the criminal" 描述了一个由词 'hacked' 触发的攻击事件。这个事件包括两个论元角色:攻击者(criminal)和受害者(a man)。模型应该能够识别事件触发器、它们的类型、参数以及它们的相应角色。

关系三元组提取 (Relation Triple Extraction):从非结构化文本中联合提取实体及其关系,这些关系以三元组形式(主体、关系、客体)表示,是知识图构建中的重要任务。给定输入句子,期望的输出是关系三元组  ,其中  是主实体

知识图谱transformer是一种基于图谱结构的编码器模型,用于学习和表示知识图谱中的关系。它采用了类似于普通transformer模型的框架,但在结构上有一些差异。通过引用可以看到,知识图谱transformer的框架图与普通transformer模型相似。然而,为了更好地利用图谱中的关系结构,解决了线性/层次约束的问题,作者提出了一种新的Graph Transformer编码器,如引用所述。这种编码器允许模型有效地利用图谱的结构信息,从而更好地学习和表示知识图谱中的关系。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [论文浅尝 | 利用图 Transformer 实现基于知识图谱的文本生成](https://blog.csdn.net/TgqDT3gGaMdkHasLZv/article/details/100190240)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [基于生成式预训练Transformer的跨媒体内容生成及知识图谱构建](https://blog.csdn.net/universsky2015/article/details/131468154)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值