
Citation: Baoxu Shi and Tim Weninger (2017). Open-World Knowledge Graph Completion 6, AAAI 2018
传统的知识库补全算法如TransE等都是基于Close world assumption 的,也是就说补全的实体必须在知识图谱内。然而事实上大规模的知识图谱是一直进化的,整个图谱并不是一成不变的。因此当遇到不存在与以前知识库中的实体或者关系如何对知识库进行补全则是一个重要的研究问题。本文提出了一个基于开放世界假设的知识补全算法,该算法可以将未出现在知识库中的实体进行补全,进而克服传统知识库补全算法的问题。
整个算法的框架如下图所示:
该算法分为三个部分
1、

本文介绍了一种基于开放世界假设的新型知识图谱补全算法,能够处理未存在于现有知识库中的实体。算法通过Relationship-Dependent Content Masking去除文本噪声,Target Fusion使用CNN模型提纯信息,Semantic Averaging对实体进行编码,最后利用list-wise ranking损失函数进行优化。实验证明,该算法优于基于封闭世界假设的方法。
最低0.47元/天 解锁文章
371

被折叠的 条评论
为什么被折叠?



