会声会影2018、2019版启动提示未注册的解决方法

1、情况概述

很多网友朋友们会发现,会声会影在安装好,或者是在更新之后,会有个弹窗,像下图这样:
在这里插入图片描述
英文版是未注册提示:
在这里插入图片描述

其实这个乱码提示只有简体中文版本上才会是乱码,英文版上显示的是″You do not appear to be a register user. Please re-install the application or call customer support with error 1011″,翻译一下就是:你似乎不是已注册用户,请重装软件或者联系客服。很明显,这个乱码弹窗,实际上是告诉你,你用的是盗版,不准你启动软件。

2、为什么会这样?

这是Corel加强防盗版的一个措施,目的是让大家都从下载器安装会声会影,会声会影主程序会验证你是否打开过下载器,没有用过下载器就会提示乱码,而论坛大部分人用的都是破解版的(替换了dll的离线安装版),所以才会显示盗版乱码提示。

3、如何解决?

其实很简单,只需要大家打开会声会影下载器,一直点击下一步,到达下载界面,参考下面的截图,到了下载界面就可以关闭下载器了。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

提醒一下:有人说下载器截图2,会卡在那里,动不了,那是因为软件服务器在国外,加载需要时间,请耐心等待,就可以了;有人说下载器截图3输入了邮箱,也无法点击下一步,这是因为你输入的姓名、邮箱格式不符合要求,建议大家写的尽可能“真一点”,国外比较流行谷歌邮箱,因此,姓名可以写马化腾,邮箱写mahuateng@gmail.com,这样下载器才会以为你写的是真的,才让你点击下一步。

4、哪里有下载器?

Corel官网就可以下载到最新的下载器,下面就提供下载器的官网下载地址给大家:会声会影2018下载器会声会影2019下载器
未来版本的会声会影,比如2020、2021、2022,此方法也应该是适应的,新版本的下载器可以在这个页面找到:https://www.videostudiopro.com/en/pages/download/

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值