论文学习:Microsoft COCO Common Objects in Context

Microsoft COCO数据集旨在促进物体识别,特别关注非图标视图中的物体检测和上下文推理。论文指出,COCO包含91种物体类别,250万标注物体,32.8万张图片,平均每张图片有3.5个类别和7.7个实例,强调了上下文在复杂场景理解中的关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文学习:Microsoft COCO: Common Objects in Context

Abstract

  • 为了促进物体识别的发展,COCO数据集是在把物体识别放到更广泛的场景理解问题下的情况下被制作而成的。
  • 每个物体都被单独分割标注,这样做的目的是进行精确的物体定位。
  • 数据集包含91种物体类别,2500000个被标注的物体,328000张图片

INTRODUCTION

论文要点

  • 对可见场景的理解包括以下几种任务:

    • 识别出所呈现出的物体是什么
    • 在2维或3维空间中对物体定位
    • 决定物体和场景的属性
    • 找出物体之间的关系并对场景进行描述

    现有的数据集都适用于场景理解的第一个任务。

  • COCO数据集专注于解决3大核心问题:

    • 检测非图标视图(non-iconic views)中的物体:

      图标视图指的是物体大致位于图片中间,没有遮挡,轮廓清晰的这种。

      非图标视图指的是存在于背景中,有遮挡的,杂乱的这种。

    • 物体之间的上下文推理:

      在一张自然图片中识别出多个物体是一个挑战,因为图片中的物体存在小尺寸和容易混淆的问题,想要实现识别出多个物体,需要使用上下文(cont

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值