论文下载地址:https://authors.library.caltech.edu/94215/2/1405.0312.pdf
论文中心
研究内容
通过将对象识别问题放在更广泛的场景理解问题的上下文中,来提高对象识别精度
贡献
提出了一个用于物体检测和物体分割任务,来自于自然生活场景中的新型数据集
主要内容
解决的问题
1、检测非图标视图(non-iconic views)中的物体 —— 图标视图指的是物体
2、位于图片中间,没有遮挡,轮廓也很清晰
3、物体(目标)之间的上下文推理
4、精确的物体二维空间定位
相关工作
图片分类:例如CIFAR-10、CIFAR-100、ImageNet,其中ImageNet含有大量的图片,极大地促进了图像分类的发展
物体检测:判断图片中物体所属类别,判断图片中检测物体所在位置,例如PASCAL VOC等数据集,但是边界框的精度也限制了检测算法准确率的评估
语义场景标注:对像素级别的物体进行标注并分类
COCO数据集
由非图标视图、且含有大量上下文信息的图片构成,上下文信息含有量可以用每张图片中含有的平均类别数和物体数来估计,而COCO数据集中的对象更小,因此对上下文的信息更加需要。
图片标注