【Paper Reading】论文阅读Microsoft COCO:Common Objects in Context

本文介绍了微软提出的COCO数据集,旨在提高物体识别精度,关注非图标视图中的物体检测、上下文推理和精确定位。COCO与ImageNet、PASCAL VOC等数据集对比,强调了上下文信息的重要性,并在标注策略上做了创新。通过对比实验,显示COCO数据集能提升模型在复杂场景的泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文下载地址:https://authors.library.caltech.edu/94215/2/1405.0312.pdf

论文中心

研究内容
通过将对象识别问题放在更广泛的场景理解问题的上下文中,来提高对象识别精度
贡献
提出了一个用于物体检测和物体分割任务,来自于自然生活场景中的新型数据集

主要内容

解决的问题
1、检测非图标视图(non-iconic views)中的物体 —— 图标视图指的是物体
2、位于图片中间,没有遮挡,轮廓也很清晰
3、物体(目标)之间的上下文推理
4、精确的物体二维空间定位
相关工作
图片分类:例如CIFAR-10、CIFAR-100、ImageNet,其中ImageNet含有大量的图片,极大地促进了图像分类的发展
物体检测:判断图片中物体所属类别,判断图片中检测物体所在位置,例如PASCAL VOC等数据集,但是边界框的精度也限制了检测算法准确率的评估
语义场景标注:对像素级别的物体进行标注并分类
COCO数据集
由非图标视图、且含有大量上下文信息的图片构成,上下文信息含有量可以用每张图片中含有的平均类别数和物体数来估计,而COCO数据集中的对象更小,因此对上下文的信息更加需要。
图片标注

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值