隐函数定义
如果方程 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0能确定 y y y是 x x x的函数,则称这种方式表示的函数是隐函数。
方法一
对方程两边同时对 x x x求导,注意 y y y是一个函数
例1
已知由方程 x y = e x + y + x 2 xy=e^{x+y}+x^2 xy=ex+y+x2确定 y y y是 x x x的函数,求 d y d x \dfrac{dy}{dx} dxdy
解:
\qquad
两边同时求导得:
y
+
x
y
′
=
e
x
+
y
(
1
+
y
′
)
+
2
x
\qquad y+xy'=e^{x+y}(1+y')+2x
y+xy′=ex+y(1+y′)+2x
x
y
′
−
e
x
+
y
y
′
=
e
x
+
y
+
2
x
−
y
\qquad xy'-e^{x+y}y'=e^{x+y}+2x-y
xy′−ex+yy′=ex+y+2x−y
(
x
−
e
x
+
y
)
y
′
=
e
x
+
y
+
2
x
−
y
\qquad (x-e^{x+y})y'=e^{x+y}+2x-y
(x−ex+y)y′=ex+y+2x−y
y ′ = e x + y + 2 x − y x − e x + y \qquad y'=\dfrac{e^{x+y}+2x-y}{x-e^{x+y}} y′=x−ex+yex+y+2x−y
d y d x = y ′ = e x + y + 2 x − y x − e x + y \qquad \dfrac{dy}{dx}=y'=\dfrac{e^{x+y}+2x-y}{x-e^{x+y}} dxdy=y′=x−ex+yex+y+2x−y
例2
设 y = f ( x ) y=f(x) y=f(x)由方程 y − x e y = 1 y-xe^y=1 y−xey=1所确定,求 y ′ ∣ x = 0 y'|_{x=0} y′∣x=0的值
解:
\qquad
两边同时求导得:
y
′
−
e
y
−
x
e
y
⋅
y
′
=
0
\qquad y'-e^y-xe^y\cdot y'=0
y′−ey−xey⋅y′=0
⇒
(
1
−
x
e
y
)
y
′
=
e
y
\qquad \Rightarrow (1-xe^y)y'=e^y
⇒(1−xey)y′=ey
⇒
y
′
=
e
y
1
−
x
e
y
\qquad \Rightarrow y'=\dfrac{e^y}{1-xe^y}
⇒y′=1−xeyey
x
=
0
\qquad x=0
x=0时,带入
y
−
x
e
y
=
1
y-xe^y=1
y−xey=1,得
y
=
1
y=1
y=1
\qquad
所以
y
′
∣
x
=
0
=
e
1
1
−
0
e
1
=
e
y'|_{x=0}=\dfrac{e^1}{1-0e^1}=e
y′∣x=0=1−0e1e1=e
方法二
对方程两边同时取对数,再对 x x x求导
例1
设 y = x sin x y=x^{\sin x} y=xsinx,求 y ′ y' y′
解:
ln
y
=
ln
x
sin
x
=
sin
x
ln
x
\qquad \ln y=\ln x^{\sin x}=\sin x\ln x
lny=lnxsinx=sinxlnx
1
y
⋅
y
′
=
cos
x
ln
x
+
sin
x
⋅
1
x
\qquad \dfrac 1y\cdot y'=\cos x\ln x+\sin x\cdot \dfrac 1x
y1⋅y′=cosxlnx+sinx⋅x1
y
′
=
y
(
cos
x
ln
x
+
sin
x
x
)
\qquad y'=y(\cos x\ln x+\dfrac{\sin x}{x})
y′=y(cosxlnx+xsinx)
y
′
=
x
sin
x
(
cos
x
ln
x
+
sin
x
x
)
\qquad y'=x^{\sin x}(\cos x\ln x+\dfrac{\sin x}{x})
y′=xsinx(cosxlnx+xsinx)
例2
设 y = x + 2 ( 3 − x ) 4 ( 2 x + 1 ) 3 y=\dfrac{\sqrt{x+2}(3-x)^4}{(2x+1)^3} y=(2x+1)3x+2(3−x)4,求 y ′ y' y′
解:
ln
y
=
ln
x
+
2
(
3
−
x
)
4
(
2
x
+
1
)
3
\qquad \ln y=\ln \dfrac{\sqrt{x+2}(3-x)^4}{(2x+1)^3}
lny=ln(2x+1)3x+2(3−x)4
= ln ( x + 2 ) 1 2 + ln ( 3 − x ) 4 − ln ( 2 x + 1 ) 3 \qquad =\ln (x+2)^{\frac 12}+\ln(3-x)^4-\ln (2x+1)^3 =ln(x+2)21+ln(3−x)4−ln(2x+1)3
= 1 2 ln ( x + 2 ) + 4 ln ( 3 − x ) − 3 ln ( 2 x + 1 ) \qquad =\dfrac 12\ln(x+2)+4\ln(3-x)-3\ln(2x+1) =21ln(x+2)+4ln(3−x)−3ln(2x+1)
\qquad 两边同时求导得:
y ′ y = 1 2 ( x + 2 ) − 4 3 − x − 6 2 x + 1 \qquad\dfrac{y'}{y}=\dfrac{1}{2(x+2)}-\dfrac{4}{3-x}-\dfrac{6}{2x+1} yy′=2(x+2)1−3−x4−2x+16
y ′ = x + 2 ( 3 − x ) 4 ( 2 x + 1 ) 3 [ 1 2 ( x + 2 ) − 4 3 − x − 6 2 x + 1 ] \qquad y'=\dfrac{\sqrt{x+2}(3-x)^4}{(2x+1)^3}[\dfrac{1}{2(x+2)}-\dfrac{4}{3-x}-\dfrac{6}{2x+1}] y′=(2x+1)3x+2(3−x)4[2(x+2)1−3−x4−2x+16]
总结
- 在隐函数中多为乘积关系时一般用两边同时求导
- 在指数含 x x x或次数较高的隐函数中一般用两边同时取对数再求导