2024年华为杯研赛(A题)|风电场有功功率优化调度|数学建模竞赛解题思路|完整代码论文集合

我是Tina表姐,毕业于中国人民大学,对数学建模的热爱让我在这一领域深耕多年。我的建模思路已经帮助了百余位学习者和参赛者在数学建模的道路上取得了显著的进步和成就。现在,我将这份宝贵的经验和知识凝练成一份全面的解题思路与代码论文集合,专为本次赛题设计,旨在帮助您深入理解数学建模的每一个环节。

本次研赛(6题)完整内容均可以在文章末尾领取!(部分代码在本帖子里格式混乱,下载后格式正常)

本次研赛A题可以做如下考虑

添加图片注释,不超过 140 字(可选)

本次A题第一问是:“风机主轴及塔架疲劳损伤程度量化指标计算低复杂度模型。”

具体内容涉及建立一个数学模型,以实现对风机的主轴和塔架在任意时段累积疲劳损伤程度的实时计算,要求方法合理有效并能在测试环境中CPU计算,计算时间小于1.00秒。选手需展示所计算结果与雨流计数法所得结果的相似程度,并提供100台风机各自元件的每秒疲劳损伤值的数据表和部分样本疲劳损伤程度的增长过程图示。 为了解决“风机主轴及塔架疲劳损伤程度量化指标计算低复杂度模型”的问题,我们可以采用基于S-N曲线法和Palmgren-Miner线性累积损伤理论的模型。以下是建模过程的详细步骤:

一、建模思路

添加图片注释,不超过 140 字(可选)

添加图片注释,不超过 140 字(可选)

二、实时计算过程

添加图片注释,不超过 140 字(可选)

1. 模型概念

1.1 功率与应力的关系

首先,我们可以通过风机的功率和风速来推导出相应的应力值。对于风机主轴和塔架,利用功率计算相应的主轴扭矩和塔架推力。如前所述,功率由风速和风机的机械特性决定。

对应功率$P_{ref}^i$和风速$V_w^i$,我们可以设定: - 主轴扭矩$T_s^i$的计算公式为:

其中,$n^i$为风机转速(单位:rpm)。

  • 塔架推力$F_t^i$可由以下关系推导:

其中,$C_d$是阻力系数,$\rho$是空气密度,$A$是风机的截面积。

1.2 疲劳损伤计算

根据Palmgren-Miner线性累积损伤理论,单台元件的累积疲劳损伤$D^{i}$可以通过以下公式定义:

其中: - $n_F^{i,j}$:在特定应力幅值$F_j$下经历的循环次数 - $N_F^{i,j}$:在特定应力幅值下的疲劳寿命

假设我们已获得基于雨流计数法计算得到的$D_F$值,以便验证我们的模型输出的累积疲劳损伤。

2. 模型实现

2.1 假设与简化

  1. 假设风速$V_w^i$和功率$P_{ref}^i$是已知的,通过分别计算主轴扭矩和塔架的推力。

  2. 在时间段内,设定每秒的数据采样,使得可以获取$n_F$和$N_F$的统计数据。

2.2 累积损伤的计算步骤

  1. 每秒钟计算

  2. 计算每台风机的主轴扭矩$T_s^i$和塔架推力$F_t^i$。

  3. 根据推力和扭矩的周期性特征和S-N曲线,进行损伤计算。

  4. 对于每秒钟的$n_F$进行统计累积。

  5. 总损伤计算

  6. 最终通过对每台风机$D_F^i$的累积值进行求和,形成整体的疲劳损伤数据表。

2.3 计算效率

该模型应能在测试环境中使用CPU计算,在1秒内输出所有100台风机的累积疲劳损伤结果。可通过优化循环和向量化计算实现。

3. 结果分析

  • 将模型计算结果与雨流计数法的比较,通过相关系数或均方根误差(RMSE)指标展示二者的相似程度。

  • 提供100台风机两种元件的每秒疲劳损伤值的数据表。

4. 示意图展示

选取5-10台风机,绘制其累积疲劳损伤程度随时间变化的曲线图,直观展示损伤程度的增长趋势。

5. 结论

通过上述模型,我们能快速且有效地量化风机主轴和塔架的疲劳损伤,提高风电场的安全性和经济性。模型的简单性和计算高效性能够适应动态监控和实时调度过程中的需求。 为了解决风机主轴及塔架的疲劳损伤程度量化指标计算,我将构建一个低复杂度的数学模型,基于S-N曲线和Palmgren-Miner线性累积损伤理论。以下是模型的详细描述及相关的数学公式。

1. 数学模型构建

1.1 变量定义

  • $D_F^i(t)$: 在时刻$t$,第$i$台风机主轴或塔架的累积疲劳损伤

  • $T_{max}^i$: 第$i$台风机主轴或塔架的最大承受应力(通过S-N曲线获得)

  • $F^i(t)$: 在时刻$t$,第$i$台风机的载荷(主轴扭矩或塔架推力)

  • $n_F^i(t)$: 在时刻$t$,第$i$台风机主轴或塔架经历的应力循环次数

1.2 疲劳损伤计算

根据Palmgren-Miner理论,累积疲劳损伤$D_F^i(t)$可以表示为:

添加图片注释,不超过 140 字(可选)

其中: - $n_F^{i,j}$: 在载荷幅值为$F_{j}$下的循环次数 - $N_F^{i,j}$: 对应于载荷幅值$F_{j}$的S-N曲线在第$i$台风机下的最大循环次数

此处需要计算每个时刻的载荷循环次数$n_F^{i,j}$。可以根据实际采集到的载荷数据进行雨流计数法处理,具体步骤为:

  1. 载荷波形检测:利用降噪和幅值提取,识别出载荷数据中的波峰和波谷。

  2. 雨流计数法:统计每个不同幅值的循环次数。

1.3 对应于部分周期的累积损伤

假设在单位时间间隔内(例如1秒),可以定义实际应力幅值$F^i(t)$。在小时间段内,假设载荷是恒定的,可以直接用其当前值进行计算:

2. 计算步骤

  1. 初始化:当$t=0$时,$D_F^i(0)=0$。

  2. 数据采集:每秒采集当前的主轴扭矩或塔架推力数据$F^i(t)$。

  3. 应力循环计算:根据当前载荷$F^i(t)$更新$n_F^{i,j}$。

  4. 疲劳损伤更新:使用上述累加公式不断更新$D_F^i(t)$。

3. 示例算法伪代码

 
 

# 初始化 D_F = [0] * N_t # 每台风机的疲劳损伤初始化为0 for t in range(T): # 遍历时间 for i in range(N_t): # 对每台风机 F_current = get_current_load() # 获取当前的载荷 F^i(t) N_F = get_N_F(F_current) # 通过S-N曲线获取N_F D_F[i] += 1 / N_F # 更新累积疲劳损伤 # 记录此次计算结果 record_damage(i, t, D_F[i])

4. 结果展示

  • 将每台风机在每秒的疲劳损伤值输出到数据表中。

  • 选取5-10个代表性样本,展示其累积疲劳损伤随时间的增长过程(例如,折线图)。

5. 结论

该模型能够在CPU测试环境中实现快速计算,并且使用明确的数学公式以反映元件的实际累积疲劳损伤程度。通过比较计算结果与雨流计数法结果的相似程度,验证模型的有效性。

以上就是针对问题一的详细解答和模型构建。希望这能满足您的需求。

 
 

import numpy as np import pandas as pd # 假设我们已经获得了100个风机在100秒内的塔架推力和主轴扭矩数据 # 这些数据已经存储在CSV文件中,数据格式为: # time, torque_i, thrust_i (i从1到100) # 数据读取 data = pd.read_csv("load_data.csv") # 把时间和载荷提取到numpy数组 time = data['time'].values torques = data.iloc[:, 1:101].values # 主轴扭矩数据 thrusts = data.iloc[:, 101:201].values # 塔架推力数据 # 定义运行参数 N = 100 # 风机数量 D_f_torque = np.zeros((N,)) # 初始化主轴疲劳损伤数组 D_f_thrust = np.zeros((N,)) # 初始化塔架疲劳损伤数组 # S-N 曲线参数(假设得到的一些参数,这里只是举个例子,有可能需要根据实际材料数据调整) S_N_params = { 'torque': {'S': 500, 'N_f': 1e6}, # S为应力,N_f为最大循环次数 'thrust': {'S': 1000, 'N_f': 5e5} } # 计算疲劳损伤 def calculate_fatigue_damage(loads, SN_params): damage = np.zeros_like(loads) for i in range(N): for load in loads[:, i]: # 计算当前载荷的累积损伤 if load > 0: # 只考虑正载荷 N_f = SN_params['N_f'] S = SN_params['S'] n_f = int(load / S) # 假设载荷随时间呈线性 D_f = n_f / N_f # 计算疲劳损伤 damage[i] += D_f # 累加到总损伤 return damage # 计算每秒的疲劳损伤值 for t in range(len(time)): D_f_torque += calculate_fatigue_damage(torques[t:t+1], S_N_params['torque']) D_f_thrust += calculate_fatigue_damage(thrusts[t:t+1], S_N_params['thrust']) # 输出数据,每秒每个风机的疲劳损伤 result_data = pd.DataFrame({ 'time': time, 'D_f_torque': D_f_torque, 'D_f_thrust': D_f_thrust }) # 保存结果到文件 result_data.to_csv('fatigue_damage_results.csv', index=False) # 显示结果的一部分 print(result_data.head()) # 绘制代表性的样本疲劳损伤程度增长过程图示 import matplotlib.pyplot as plt # 假设选择第1、2和3号风机绘制其疲劳损伤变化曲线 plt.figure(figsize=(12, 6)) for i in [0, 1, 2]: plt.plot(time, D_f_torque[i::N], label=f'Torque Fatigue Damage Wind Turbine {i+1}') plt.plot(time, D_f_thrust[i::N], label=f'Thrust Fatigue Damage Wind Turbine {i+1}', alpha=0.5) plt.title('Fatigue Damage Over Time for Turbines 1, 2, and 3') plt.xlabel('Time (s)') plt.ylabel('Cumulative Fatigue Damage') plt.legend() plt.grid() plt.show() 省略

说明: 此代码示例假设已经有保存好的风机载荷数据(主轴扭矩和塔架推力),并利用简化的S-N曲线参数计算每台风机的疲劳损伤。结果汇总在一个DataFrame中,最后也给出了绘制示例风机的疲劳损伤曲线的代码。请根据具体数据调整路径和参数。 第二个问题是关于如何利用风速和功率估算塔架推力和主轴扭矩。具体要求是建立数学模型,根据风机所处位置的风速条件和功率参考值,估算当前风机所承受的应力(塔架推力和主轴扭矩)。模型可以结合受力分析、能量守恒或其他合理的思路进行建立,并且需提供计算结果与参考值之间的对比,确定其准确性。在这个问题中,给出的数据包括各风机轮毂处的等效风速和有功功率参考值,要求输出的结果为风机轴系扭矩和塔顶推力。 为解决第二个问题,我们需要建立一个数学模型来根据风速和功率估算风机所承受的塔架推力和主轴扭矩。以下是模型的建立步骤与推导过程。

建立模型

  1. 基本概念:

  2. 风机在工作时所承受的风能转化为机械能,进而转化为电能。风机的推力与扭矩与风速及功率密切相关。

  3. 有功功率$ P $与风速$ V $之间的关系可以通过风机的功率曲线来描述,但在本模型中,我们将简化处理。

  4. 力学分析:

  5. 风机叶片所受的推力$ F_t $与风速之间的关系可以通过动量原理得到。设风机的直径为$ D $,轮毂处的有效风速为$ V_{w} $,风机效率为$ \eta $,则可以表示为:

  6. 假设一个5MW的风机在额定风速下的推力可以达到最大值。

  7. 主轴扭矩的估算:

  8. 主轴扭矩$ T_s $与风机的输出功率和角速度之间有关系。推导推理如下: 这里$ \omega $是风机的角速度,通过风速计算得出: 其中,$ N $为风机的转速(单位:r/min),可通过风机的设计参数得到。

  9. 结合功率公式:

  10. 最终模型:

  11. 在考虑风能的转化过程中,假定风机处于高效工作状态,最终的推力和主轴扭矩计算公式如下:

  12. 塔架推力计算:

  13. 主轴扭矩计算:

计算输出

借助以上模型,我们可以对每个风机在任意时刻的推力和扭矩进行估算:

  • 代入已知的$ P_{ref}^i $ (有功功率参考值) 和 $ V_{w}^i $ (风速),以及风机转速$ N $,即可得到每个风机的塔架推力$ F_t $和主轴扭矩$ T_s $,最终将估算的值与实际测得的参考值进行比较,以检验模型的准确性。

示例计算

假设某时刻: - 有功功率参考值 $ P_{ref}^i = 5 \text{ MW} = 5000 \text{ kW} $ - 风速 $ V_{w}^i = 12 \text{ m/s} $ - 风机转速 $ N = 15 \text{ r/min} $

计算推力和扭矩: 1. 推力: 2. 主轴扭矩: 将功率转换为合适单位:

上述模型和计算结果展示了如何利用风速和功率估算塔架推力和主轴扭矩,确保在实际工程中进行验证和校准。最终需要对所有100台风机进行类似计算,并将结果统计整理。 要根据风机所处位置的风速条件和功率参考值来估算塔架推力和主轴扭矩,可以使用以下步骤和数学模型进行计算。

1. 理论基础

首先,我们可以利用风力学原理和机械动力学进行分析。具体来说,当风速为 $V_w^i$ 时,风机应该能产生的功率 $P_{wind}^i$ 可以通过以下公式计算:

其中:

  • $\rho$为空气密度(通常为$1.225 \text{kg/m}^3$)。

  • $A$为风轮的扫掠面积,$A = \pi r^2$,$r$为风轮半径。

2. 风机推力和扭矩的计算

在风机的功率输出与其所承受推力和扭矩之间可以建立公式关系。对风机的推力 $F_t^i$ 和扭矩 $T_s^i$,我们可以得到以下关系:

推力可以表示为:

主轴扭矩可以表示为:

其中,$\omega$ 为风机的角速度,通常由风速和风轮半径计算得出:

将风机推力的公式代入主轴扭矩的式子中,我们可以得出:

3. 计算步骤

通过上述公式,我们可以得到风机的推力和扭矩:

  1. 计算风机的风功率:

  2. 用给定的风速 $V_w^i$ 计算 $P_{wind}^i$。

  3. 计算推力:

  4. 使用推力计算公式 $F_t^i = \frac{2P_{wind}^i}{V_w^i}$。

  5. 计算主轴的角速度:

  6. 计算角速度 $\omega = \frac{V_w^i}{r}$。

  7. 计算扭矩:

  8. 使用扭矩计算公式 $T_s^i = \frac{P_ref^i \cdot r}{V_w^i}$。

4. 结果的准确性验证

在估算 $F_t^i$ 和 $T_s^i$ 之后,可以将其与提供的参考值相比进行准确性验证。通过计算估算值与参考值之间的差距,例如平方差,可以确保模型的准确性。

结论

这种利用风速条件和功率参考值来估算塔架推力和主轴扭矩的方法是合理且有效的。通过这一数学模型,我们能够实时监测风机的机械负担,进而帮助优化风电场的运行与维护策略,从而降低故障风险和维护成本。 为了估算风机的塔架推力和主轴扭矩,我们可以根据风机的工作原理和动力学进行建模。主要依据是风机的功率与风速之间的关系,以及风机在运转时所承受的载荷。以下是建立数学模型的详细步骤。

1. 建立基本关系

首先,我们定义以下参数: - $V_w^i$:第$i$台风机的风速(m/s) - $P_{\text{ref}}^i$:第$i$台风机的有功功率参考值(W) - $A$:风机的扫风面积(m²) - $\rho$:空气密度(通常取1.225 kg/m³) - $C_p$:功率系数(取值范围在0到0.5之间,具体取决于风机设计;通常取0.4作为参考)

根据风学理论,风机的输入功率可以表示为:

2. 计算风机的有效扫风面积

扫风面积$A$可以用风机的直径$d$计算: 这里,$d$是风机叶片的直径(m)。

3. 计算推力和扭矩

风机的塔架推力$F_t^i$可以通过风速与空气动力学考虑计算:

主轴扭矩$T_s^i$可以通过关系$P = T \cdot \omega$得到,其中$\omega$是风机的角速度,且对于旋转的风机: 其中$r$是风机的叶轮半径。

由此,扭矩$T_s^i$可以表示为:

4. 组合公式

综合上述,我们可以得到对于第$i$台风机的塔架推力和主轴扭矩的计算公式: 1. 塔架推力: 2. 主轴扭矩: 在此模型中,我们需要确定风机的直径和叶轮半径,并且这些参数可以根据具体的风机型号获取。

5. 示例计算

假设我们有以下参数: - 风机直径$d = 126 \text{ m}$(例如某5MW风机) - $C_p = 0.4$ - 空气密度$\rho = 1.225 \text{ kg/m}^3$ - 风速$V_w^i = 12 \text{ m/s}$ - 有功功率参考值$P_{\text{ref}}^i = 5 \times 10^6 \text{ W}$(5MW)

步骤: 1. 计算扫风面积:

  1. 计算塔架推力:

  2. 计算半径$r$:

  3. 计算主轴扭矩:

结论

根据上述模型,可以实时估算每台风机的塔架推力和主轴扭矩,确保在实际应用中能有效反映所需的应力状态。进一步需要将结果与现有参考值进行比较,以验证模型的准确性和有效性。

 
 

import numpy as np import pandas as pd # 定义常数 rho_air = 1.225 # kg/m^3, 空气密度 A = 2 * np.pi * (40**2) # m^2, 风轮面积, 假设风轮直径为80m rated_power = 5000 # W, 风机额定功率 5MW rated_wind_speed = 11.2 # m/s, 风机额定风速 # 计算推力和扭矩的函数 def calculate_forces_and_torque(v_w, P_ref): # 计算额定功率时的推力 if v_w <= rated_wind_speed: thrust = 0.5 * rho_air * A * v_w**2 # 在额定风速下涉及的理论推力计算 else: thrust = 0.5 * rho_air * A * rated_wind_speed**2 # 超过额定风速的推力 # 计算扭矩 # 通过有功功率和风机转速之间的关系来估算扭矩 # assuming the wind turbine operates at rated efficiency omega_rated = rated_power / (0.5 * rho_air * A * (rated_wind_speed**3)) # 计算额定角速度 torque = P_ref / (omega_rated * (2 * np.pi / 60)) # 扭矩公式 T = P / ω return thrust, torque # 示例数据:各风机轮毂处等效风速 V_w 和有功功率参考值 P_ref data = { 'V_w': [12.0, 10.5, 11.0, 15.0, 9.5], # m/s 'P_ref': [5000, 4800, 4900, 5200, 4500] # W } df = pd.DataFrame(data) # 计算每个风机的塔架推力和主轴扭矩 df['Thrust'], df['Torque'] = zip(*df.apply(lambda row: calculate_forces_and_torque(row['V_w'], row['P_ref']), axis=1)) # 输出结果 print(df[['V_w', 'P_ref', 'Thrust', 'Torque']])

上述代码定义了如何根据给定风速和功率参考值来估算风机的塔架推力和主轴扭矩。首先定义了一些常数,例如空气密度、风轮面积(假设特定直径)以及风机的额定功率和风速。然后,构建了一个计算推力和扭矩的函数。最后,将示例数据传入函数并输出结果。这段代码可以根据实际的数据被扩展和修改。 问题三是“有功调度优化问题构建与实时求解”,其主要内容要求建立优化模型,进行有功功率的优化分配,以降低风电场所有风机的总体疲劳损伤程度。具体要求包括:

  1. 优化目标:定义所有风机的总体疲劳损伤程度,需分别将主轴和塔架的两种元件的疲劳损伤定义为两个目标。

  2. 约束条件:

  3. 确保所有风机的有功参考值之和等于电网调度指令 P_t 。

  4. 每台风机的有功参考值不得超过其额定输出值(5MW)。

  5. 确保优化分配结果与平均分配方法结果的差值不超过1MW。

  6. 输出要求:

  7. 提供目标函数及各目标的权重值,并对其设计思路进行说明。

  8. 每秒进行一次功率分配,并展示计算结果的实时性(含计时器动图)。

  9. 展示约束条件是否满足,以及优化后与优化前的结果对比,包括但不限于累积疲劳损伤程度和参考功率方差值等。

总之,该问题的核心是要求参赛者建立一个有效的优化模型,以在实时条件下完成风电场风机的有功功率优化分配。 为了解决“有功调度优化问题构建与实时求解”,我们需要设计一个能有效降低风电场总体疲劳损伤的优化模型。以下是对问题的数学建模。

1. 优化目标

我们需要定义风电场所有风机的总体疲劳损伤程度。这里,我们将疲劳损伤分为主轴的疲劳损伤 $D_{shaft}$ 和塔架的疲劳损伤 $D_{tower}$,我们可以通过以下方式表达这两个目标:

  • 主轴疲劳损伤: 其中,$D_{shaft}^i$ 是第 $i$ 台风机的主轴疲劳损伤。

  • 塔架疲劳损伤: 同样,$D_{tower}^i$ 是第 $i$ 台风机的塔架疲劳损伤。

我们的总体目标函数可以设置为: 其中,$w_1$ 和 $w_2$ 是对应于主轴和塔架疲劳损伤的权重,可以根据实际需求进行调整。

2. 约束条件

添加图片注释,不超过 140 字(可选)

(1) 功率总和约束

确保所有风机的有功参考值之和等于电网调度指令 $ P_t $:

(2) 功率上限约束

每台风机的有功参考值不得超过其额定输出值(5MW):

(3) 优化分配差值约束

确保优化分配结果与平均分配方法结果的差值不超过1MW: 其中,平均分配的功率 $ \bar{P}_{ref}^i = \frac{P_t}{N_t} $。

3. 目标函数及权重设计思路

  • 目标函数:将主轴和塔架疲劳损伤综合到一个目标函数中,以便同时考虑这两部分的损伤,能够有效平衡两者之间的关系。

  • 权重值:根据实际风电场的设计要求和风机的运行特性,我们可以赋予不同的权重。例如,如果更关注主轴的安全性,可以设置 $w_1 > w_2$。反之,如果塔架的安全性更为重要,则设置 $w_2 > w_1$。普遍情况下,我们可以将 $w_1 + w_2 = 1$。

4. 实时性要求

为了满足每秒进行一次功率分配的需求,我们应实施高效的求解算法(如线性规划、整数规划等),并确保优化计算时间小于1秒。在这里,可以使用计时器功能记录优化计算的实时性,并通过动图展示计算过程。

5. 结果检查与对比

在实时运行结束后,需要展示模型的约束条件是否满足,并与优化前(平均分配)和优化后(优化分配)进行对比,主要在以下几个方面:

  • 各个风机的累积疲劳损伤程度变化。

  • 所有风机的累积疲劳损伤总和。

  • 风机间参考功率的方差值对比。

通过比较这些指标,评估优化后的功率分配是否达到了预期的效果,并且在实际运维中起到降低风机疲劳损伤的效果。 为了有效地解决有功功率优化问题,我们需要建立一个数学模型,以降低风电场中所有风机的总体疲劳损伤程度。以下是我们将要构建的优化模型的详细说明:

一、优化目标

我们将疲劳损伤程度分为两部分:主轴的疲劳损伤和塔架的疲劳损伤。具体优化目标如下:

  1. 主轴疲劳损伤目标: 为了降低所有风机的主轴累积疲劳损伤程度,我们设定目标为主轴的平均疲劳损伤最小化: 其中,$D_{F_{m}}^i$ 表示第$i$台风机主轴的疲劳损伤,$N_t$ 为风机数量。

  2. 塔架疲劳损伤目标: 同样,我们设定目标为塔架的平均疲劳损伤最小化: 其中,$D_{F_{t}}^i$ 表示第$i$台风机塔架的疲劳损伤。

二、约束条件

为了确保优化计算的有效性和可行性,我们需要满足以下约束条件:

  1. 对于电网的有功调度: 这里$P_t$ 是电网调度指令,$P_{ref}^i$ 是第$i$台风机的有功参考值。

  2. 对于风机的输出限制:

  3. 对于功率优化分配结果的限制: 其中,$P_{avg}$ 是平均分配功率。

三、目标函数

综合以上目标,最终的目标函数可以表示为: 其中,$w_1$ 和 $w_2$ 是目标函数的权重值,用于平衡主轴和塔架之间的优化目标,且 $w_1 + w_2 = 1$. 权重值的选择可以基于元件的实际重要性和损伤敏感性进行设定,建议初步取 $w_1 = 0.5$ 和 $w_2 = 0.5$。

四、算法实现及实时性

我们设计的优化模型需要每秒钟进行一次功率分配计算。为此,可以采用分段线性规划(Piecewise Linear Programming)或遗传算法(Genetic Algorithm)等启发式算法进行优化求解。我们需确保算法的时间复杂度应低于1.00秒,以满足实时性的要求。

  • 每次计算的结果应输出,并展示每个风机的功率分配和相应的累积疲劳损伤值。

  • 输出应包含计时器动图,实时更新能有效展示每秒钟计算的动态效果。

五、结果验证

为验证我们的优化结果,我们需展示以下对比指标: - 优化后与优化前(平均分配方法)每台风机的累积疲劳损伤程度。 - 优化后与优化前所有风机的整体累积疲劳损伤总和的对比。 - 各个风机的参考功率方差值。

上述步骤的有效实施,将有助于实现风电场的有功功率优化分配,降低风机的疲劳损伤,从而提升风电场的运行安全性和经济性。模型的建立和实施关注的核心在于权衡各个风机的功率分配与损伤控制之间的关系,实现动态调度与优化。 要解决风电场有功功率的优化分配问题,我们需要建立一个数学模型,以降低所有风机的总体疲劳损伤程度。下面将详细描述优化目标、约束条件和目标函数,并提供相应的数学公式。

1. 优化目标

我们将所有风机的总体疲劳损伤程度作为优化目标。具体来说,我们考虑主轴和塔架的两种元件的疲劳损伤。

  • 目标1: 最小化所有风机主轴的平均疲劳损伤:

其中,$D_{F_{1i}}$ 表示第 $i$ 台风机主轴的疲劳损伤,$N_t$ 为风机总数量。

  • 目标2: 最小化所有风机塔架的平均疲劳损伤: 其中,$D_{F_{2i}}$ 表示第 $i$ 台风机塔架的疲劳损伤。

2. 目标函数

我们将目标1与目标2进行综合,形成一个整体损伤最小化的目标函数。在这儿,我们使用加权求和法来构建目标函数: 其中,$w_1$ 和 $w_2$ 为对应目标的权重,且满足 $w_1 + w_2 = 1$。

3. 约束条件

为了确保优化过程的实际可行性,需要遵循以下约束条件:

  1. 功率平衡约束:

所有风机的有功参考值之和必须等于电网调度指令 P_t :

2. 功率限制:

每台风机的有功参考值不得超过额定输出值(5 MW):

3. 分配差值约束:

优化分配结果与平均分配方法结果的差值不超过1 MW:

其中,$\bar{P}_{\text{ref}} = \frac{P_t}{N_t}$ 为平均功率分配值。

4. 输出要求

  • 目标函数:

  • 计时器动图: 显示实时计算结果。

  • 约束条件验证: 检查满足上述约束条件,并与平均分配方法进行对比,包括每台风机的累积疲劳损伤程度和功率分配方差等。 总结

通过以上目标和约束的设定,我们能够有效构建一个优化模型,实现风电场中每台风机有功功率的实时优化分配,降低总体疲劳损伤,同时确保优化问题在约束条件下得到可行解。 以下是针对问题三的有功调度优化模型的 Python 代码示例。该代码使用了简单的最优化方法(如线性规划)来求解风电场中风机的有功功率优化分配。请根据实际应用场景调整数据输入和约束条件。

 
 

import numpy as np from scipy.optimize import linprog # 定义参数 N_t = 100 # 风机数量 P_t = 400 # 电网调度指令(例,400MW) rated_power = 5 * N_t # 每台风机额定功率总和 # 随机生成每台风机的当前疲劳损伤值,供例示 # 在实际应用中,这些数据应根据测量结果来生成 fatigue_damage_spindle = np.random.rand(N_t) # 主轴疲劳损伤度 fatigue_damage_tower = np.random.rand(N_t) # 塔架疲劳损伤度 # 优化目标是最小化两种元件的疲劳损伤总和 c = np.concatenate((fatigue_damage_spindle, fatigue_damage_tower)) # 约束条件矩阵 A_eq = np.ones((1, N_t * 2)) b_eq = np.array([P_t]) # 每台风机的有功参考值不大于其额定值 bounds = [(0, 5)] * N_t + [(0, 5)] * N_t # 每台风机的功率参考值上下限 # 线性规划求解 result = linprog(c, A_eq=A_eq, b_eq=b_eq, bounds=bounds, method='highs') # 显示结果 if result.success: P_ref = result.x[:N_t] # 主轴功率分配 print("优化后的有功功率参考值(主轴):", P_ref) # 计算每台风机的塔架功率分配 F_ref = result.x[N_t:] # 塔架功率分配 print("优化后的有功功率参考值(塔架):", F_ref) # 计算各台风机的累积疲劳损伤程度 total_fatigue_spindle = np.sum(P_ref * fatigue_damage_spindle) total_fatigue_tower = np.sum(F_ref * fatigue_damage_tower) print("主轴的总疲劳损伤程度:", total_fatigue_spindle) print("塔架的总疲劳损伤程度:", total_fatigue_tower) # 验证约束条件是否满足 print("功率分配和约束条件是否满足:", np.isclose(np.sum(P_ref), P_t)) else: print("优化未成功:", result.message)

代码说明:

  1. 参数定义:

  2. 初始设定风机数量 N_t 和电网调度指令 P_t。

  3. 储存风机主轴和塔架的疲劳损伤值,这些值应从实际数据中获取。

  4. 目标函数与约束条件:

  5. 目标函数为累积疲劳损伤度的总和,优化目标为最小化。

  6. 约束条件确保有功功率参考值总和等于电网指令 P_t。

  7. 优化求解:

  8. 使用 scipy.optimize.linprog 函数执行线性规划求解。

  9. 根据优化结果输出每台风机的功率分配。

  10. 结果输出与约束验证:

  11. 输出优化后的参考功率,并验证约束条件是否满足。

注意:

请确保在运行此代码之前已经安装了所需的库(如 numpy 和 scipy),并修改相应的数据输入部分,以适应实际应用场景。 第四个问题是:

考虑通信延迟和测量噪声的有功功率优化与求解 实际风电场中,AGC系统所需的信号通过多种传感器采集并经由高速光纤环网传递至集控。一方面,现场传感器测量数据存在随机噪声,导致采集数据受到随机干扰,实际工程中噪声一般为原始数据的正负10%以内(测量值与真实值的相对误差在10%以内)。另一方面,通信过程在协议层和物理层均可能受到传输拥塞影响,存在随机传输延迟问题,导致部分时间段数据无法及时采集,此时优化调度过程仅可基于上一个正常通信时刻的采集数据进行优化,实际工程中一般最大延迟为10s以内。上述数据测量噪声和传输延迟导致理想条件下的优化问题难以满足实际需求。因此,可进一步考虑随机测量噪声和通信延迟对于模型精度和优化问题最优性的影响,完善问题三中的优化方案。附件4为额外的十台风机的300s测量数据(仅提供添加噪声以及延迟后的数据,不包含原数据),数据类型同附件3,作为测试集检验鲁棒模型。要求展示并比对优化效果(具体要求同问题3),并展示所建模型对噪声和延迟的抑制能力(展示方法包括但不限于有无该模型情况下,优化结果的前后对比等)。 为了解决第四个问题——考虑通信延迟和测量噪声的有功功率优化与求解,我们需要建立一个综合考虑测量噪声和通信延迟的优化模型。以下是具体的建模思路和建议步骤。

1. 问题描述

在实际应用中,由于传感器噪声和通信延迟,AGC系统所接收的数据可能会与真实数据存在一定偏差。这导致优化调度的输入数据不准确,从而影响优化结果。因此,我们需要在优化模型中考虑这些不确定性因素。

2. 方法步骤

2.1. 定义状态变量和参数

  • 令$ P_{t,j}^{real} $为第$j$时刻的真实有功调度指令。

  • 令$ P_{t,j} $为第$j$时刻接收到的有功调度指令(可能受到噪声影响)。

  • 令$ N_j $为第$j$时刻的测量噪声系数,按照题目描述,取值范围为$[0.9, 1.1]$。

  • 令$ D_j $为第$j$时刻的通信延迟,最大值为$D_{max}=10s$。

因此,第$j$时刻接收到的有功指令可以表示为:

2.2. 有功功率优化目标函数

基于问题三的定义,我们需要优化每台风机的有功功率分配,使得整体的疲劳损伤最小,同时确保满足电网调度指令。目标函数可以写为: 其中$D_{F_i}^{shaft}$与$D_{F_i}^{tower}$分别代表第$i$台风机主轴和塔架的累积疲劳损伤。

2.3. 约束条件

  1. 有功功率参考值总和约束:

  2. 每台风机的功率最大值约束:

  3. 优化分配值与平均分配结果的差异约束: 其中$\bar{P}{ref,i} = \frac{P{t,j}}{N_t}$为平均分配功率。

2.4. 处理通信延迟

由于通信延迟导致信息滞后,优化控制策略可以通过“状态反馈”来实现。假设$D_{j}$为通讯延迟的影响,则应基于第$j-D_{j}$时刻的数据进行优化计算。因此,在优化时需要将之前时刻的数据应用于本时刻的优化过程。

3. 数学模型

综合以上内容,最终模型可以表示为:

4. 实时求解方法

  1. 动态更新: 每秒钟更新状态变量$ P_{t,j} $,通过接收最新的测量数据并应用噪声模型。

  2. 多步优化: 在每次更新中,基于延迟时间$D_{j}$,使用上一个有效时刻的数据$P_{t,j-D_{j}}$进行优化计算。

  3. 鲁棒性: 在求解过程中,引入鲁棒优化方法,考虑最坏情况下的性能保障。

5. 比较与验证

  • 在进行模型求解之后,需要与未考虑噪声和延迟的模型进行对比,展示在 在考虑通信延迟和测量噪声的有功功率优化与求解中,需要针对风电场中的实际情况优化功率分配模型,使其具有鲁棒性和实时性,以应对测量噪声和通信延迟的影响。以下是针对该问题的建模思路及优化方法:

1. 噪声建模与处理

首先,对于测量噪声,我们可以使用加性噪声模型表示风速和功率参考值的测量值,设真实风速为 $V_{w}^i$,实际测得风速为 $V'{w}^i = V{w}^i + \epsilon^i$, 其中 $\epsilon^i$ 代表在 $[-0.1V_{w}^i, 0.1V_{w}^i]$ 范围内均匀分布的随机噪声。对于功率参考值同样进行类似处理。

2. 延迟建模

通信延迟可以通过引入延迟项表示,设实际采集的风速为 $V'_{w}(t)$,在某一时间点 $t$ 时刻的测量可能是之前某时刻 $t - \Delta t$ 的风速值,其中 $\Delta t$ 是随机延迟,范围为 $[0, 10]$ 秒。可表示为:

3. 优化模型改进

在优化时,为了处理噪声和延迟,我们可以引入一个稳健优化模型。具体的优化目标函数可以定义为: 其中,$D_{F_{axis},i}$ 和 $D_{F_{tower},i}$ 分别表示第 $i$ 台风机的主轴和塔架的疲劳损伤。约束条件包括: 1. $\sum_{i=1}^{N_t} P_{ref}^i = P_t$ 2. $P_{ref}^i \leq P_{rated}$, 其中 $P_{rated}$ 为风机的额定功率。 3. $|P_{ref}^i - \bar{P}^i| \leq 1$,其中 $\bar{P}^i$ 为平均分配功率。

4. 鲁棒优化与敏感性分析

为提高模型对于噪声和延迟的鲁棒性,可以考虑使用鲁棒优化方法,通过对目标函数和约束条件进行不确定性集的局部敏感性分析来增强系统的应变能力。例如,可以将目标转化为最小化期望损伤的影响:

5. 优化效果展示

在实验中,需将优化结果与未考虑噪声和延迟下的结果进行对比。希望通过模拟环境,在有无鲁棒优化情况下,比较不同时间段内疲劳损伤程度的降低情况,建立如下的对比指标: - 优化前后各个风机的累积疲劳损伤程度 - 优化前后所有风机的累计疲劳损伤总和 - 优化前后风机之间参考功率的方差值

数据可用热图或折线图形式展示优化效果。

结论

通过在优化过程中引入噪声模型和延迟建模,以及采用鲁棒优化方法,可以更好地应对实际风电场中由于传感器噪声和通信延迟引发的优化挑战。所提出的方法不仅能有效提高模型的实时性,还能在不理想条件下确保优化结果的可靠性,为风电场的健康高效运行提供理论基础和实践支撑。 在考虑通信延迟和测量噪声的情况下,风电场的有功功率优化问题需要建立一个更加鲁棒的模型,以应对数据的不确定性。以下是关于该问题的解决方案。

1. 模型构建

1.1 常规优化问题回顾

在没有噪声和延迟的理想条件下,优化目标为: 其中,$D_{\text{shaft}}$和$D_{\text{tower}}$分别是所有风机的主轴和塔架的累积疲劳损伤。同时,约束条件为:

  1. $ \sum_{i=1}^{N_t} P_{\text{ref}}^i = P_t $

  2. $ P_{\text{ref}}^i \leq P_{rated} $ for all $i$

  3. $ |P_{\text{ref}}^i - P_{\bar{ref}}^i| \leq 1\, \text{MW} $ for all $i$

1.2 考虑测量噪声和通信延迟

在实际应用中,传感器的数据会受到噪声的影响,导致信号有 ±10%的偏差。此外,通信延迟使得优化过程只能依赖于上一个正常通信周期的数据。因此,我们需要引入噪声模型和延迟的处理。

  1. 测量噪声模型:假设传感器采集数据$P_t$受到随机噪声影响,可以表示为: 其中,$\epsilon_t$是一个服从$[-0.1, 0.1]$范围的随机变量。

  2. 延迟问题:优化过程应基于最近的有效数据进行,因此可以建立一个延迟函数$L_t$,表示为上一个周期的有效数据:

1.3 增强鲁棒性约束

要保持系统在噪声与延迟作用下的稳定性,增加以下约束条件:

  1. 对于每个风机$i$:

  2. 累积疲劳损伤须在最大容忍范围内:

2. 优化求解

引入约束后,基于粒子群优化PSO(Particle Swarm Optimization)或其他优化算法,还需做如下步骤:

  1. 初始化:设定每台风机的初始功率分配 $P_{\text{ref}}^i$ 为平均分配。

  2. 迭代求解:

  3. 计算当前功率分配带来的疲劳损伤$D_{total}$,并根据新的测量结果不断调整$P_{\text{ref}}$。

  4. 若满足延迟条件,则更新有效的功率值,并基于当前信息进行向优化模型的计算。

  5. 终止条件:设定最大迭代次数或目标函数收敛准则。

3. 成果分析与模型鲁棒性

  • 优化效果比较:在引入噪声和延迟前后的结果需进行对比,包括总的累积疲劳损伤$D_{total}$并展示对比图。

  • 鲁棒性展示:通过数个实验设计,证明在引入噪声和延迟后,模型依然维持在既定的损伤范围内,同时保持功率分配的合理性。

可以通过图标展示优化后的累积损伤程度变化,结合误差条展示在噪声和延迟影响下的波动情况,以反映模型的鲁棒性。这样我们能更直观地理解噪声与延迟对优化效果的影响,同时显现我们的优化模型在复杂环境中的稳定性和可操作性。

 
 

import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.optimize import minimize # 假设的风机数量 N_t = 100 # 加载数据:附件4中插入噪声和延迟的数据 # 这里假设数据已经被加载到DataFrame中,包含风机ID、测量时间、风速、功率等 # 示例数据生成 # 数据格式为: 风机ID, 测量时间, 风速, 功率 np.random.seed(42) # For reproducibility measurements = pd.DataFrame({ 'Wind_Turbine_ID': np.repeat(np.arange(N_t), 300), 'Time_Stamp': np.tile(np.arange(300), N_t), 'Wind_Speed': np.clip(np.random.normal(12, 1, N_t * 300), 5.0, 15.0), # 风速在5至15之间 'Power': np.clip(np.random.normal(5.0, 0.5, N_t * 300), 0, 5) # 功率在0到5MW之间 }) # 添加随机噪声(±10%) noise_factor = 0.1 measurements['Power_Noise'] = measurements['Power'] * (1 + np.random.uniform(-noise_factor, noise_factor, measurements.shape[0])) # 考虑延迟:假设10s内随机延迟 delay_max = 10 # 最大延迟时间为10秒 measurements['Delayed_Power'] = measurements.groupby('Wind_Turbine_ID')['Power_Noise'].shift(np.random.randint(0, delay_max + 1, N_t)) # 使延迟应用于每台风机 # 优化目标函数:示例为降低风机的疲劳损伤程度 def objective(reference_power, turbine_power, weights): # 计算每台风机的疲劳损伤(这里用简单的平方和作为示例) fatigue_damage = np.sum(np.square(turbine_power - reference_power)) return fatigue_damage # 优化约束条件:总功率等于调度指令且每台功率不超过5MW def constraint_total_power(x, total_power): return total_power - np.sum(x) def constraint_power_limits(x): return 5.0 - x # 不超过5MW # 初始化功率参考值,与测量功率相同 reference_power = measurements.groupby('Wind_Turbine_ID')['Power'].mean().values total_power_target = np.sum(reference_power) # 设定初始值和约束条件 initial_power_distribution = reference_power.copy() constraints = [ {'type': 'eq', 'fun': constraint_total_power, 'args': (total_power_target,)}, {'type': 'ineq', 'fun': constraint_power_limits} ] # 进行优化 result = minimize(objective, initial_power_distribution, args=(reference_power, None), constraints=constraints) optimized_power_distribution = result.x # 将结果与原始功率进行比较 measurements['Optimized_Power'] = np.repeat(optimized_power_distribution, 300) # 绘制优化前后的结果对比 plt.figure(figsize=(14, 7)) plt.plot(measurements['Time_Stamp'], measurements['Power'], label='Original Power', alpha=0.5) plt.plot(measurements['Time_Stamp'], measurements['Optimized_Power'], label='Optimized Power', alpha=0.8) plt.title('Power Distribution Optimization Before and After') plt.xlabel('Time (s)') plt.ylabel('Power (MW)') plt.legend() plt.show() # 输出优化结果 print("优化后的功率分配:", optimized_power_distribution) print("优化效果比较完成。")

添加图片注释,不超过 140 字(可选)

由于篇幅过长

更多内容具体可以看看我的下方名片!
里面包含有本次竞赛一手资料与分析!
另外在赛中,我们也会陪大家一起解析建模比赛
记得关注Tina表姐哦~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值