深度学习算法--ResNet、BN、Inception(笔记)

本文探讨了ResNet的残差结构如何解决深度网络训练问题,批量归一化(BN)如何加速训练和防止过拟合,以及Inception的多尺度卷积特性。这些技术共同推动了深度学习模型性能的提升和计算效率的优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、ResNet

ResNet,全称残差网络(Residual Network),是一种深度卷积神经网络架构,它通过引入残差学习来解决深层网络训练中的退化问题

1、结构

        1、残差块:这是ResNet的基本组成单元,用于构建网络的主要部分。残差块通常包含两个或更多的卷积层,每个卷积层后都跟着Batch Normalization(批量归一化)层和ReLU激活函数。这种设计有助于网络学习更复杂的特征。

        2、短路连接:ResNet通过在传统的层之间添加快捷连接,也称为跳跃连接或直连通道,这些连接使得网络可以学习到输入与输出之间的残差映射,而不是直接学习映射。

        3、深度变体:ResNet有多个深度变体,如ResNet18、ResNet34、ResNet50、ResNet101和ResNet152。这些数字代表了网络层的数量,例如ResNet50就包含了50层。不同的深度适用于不同的任务和计算资源。

        4、Bottleneck结构:为了进一步提高网络的性能和效率,ResNet还引入了Bottleneck结构。这是一种特殊设计的残差块,它通过减少参数数量来降低计算复杂度,同时保

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值