一、ResNet
ResNet,全称残差网络(Residual Network),是一种深度卷积神经网络架构,它通过引入残差学习来解决深层网络训练中的退化问题
1、结构
1、残差块:这是ResNet的基本组成单元,用于构建网络的主要部分。残差块通常包含两个或更多的卷积层,每个卷积层后都跟着Batch Normalization(批量归一化)层和ReLU激活函数。这种设计有助于网络学习更复杂的特征。
2、短路连接:ResNet通过在传统的层之间添加快捷连接,也称为跳跃连接或直连通道,这些连接使得网络可以学习到输入与输出之间的残差映射,而不是直接学习映射。
3、深度变体:ResNet有多个深度变体,如ResNet18、ResNet34、ResNet50、ResNet101和ResNet152。这些数字代表了网络层的数量,例如ResNet50就包含了50层。不同的深度适用于不同的任务和计算资源。
4、Bottleneck结构:为了进一步提高网络的性能和效率,ResNet还引入了Bottleneck结构。这是一种特殊设计的残差块,它通过减少参数数量来降低计算复杂度,同时保