基于目标检测模型实践钢铁缺陷检测为生产质量把关

本文运用深度学习的yolov4-tiny模型,基于Darknet框架,对1400张钢铁缺陷数据进行检测。通过调整配置文件,训练模型达到良好效果,随机测试验证了模型的识别能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

将深度学习应用于产业实践已经是很大的一个趋势了,借助于模型的自动计算能力能够很高效低成本地完成很多工作,比如质检质控。

本文主要就是基于钢铁数据来实现对钢铁生产过程中产生的缺陷进行检测,首先看下效果图:

 更多样例:

 这里主要的缺陷类型共有六种,如下所示:

龟裂
夹杂物
麻面
刮痕
补丁程序
轧入比例

使用英文来表示对应的缺陷类型,如下所示:

crazing
inclusion
pitted_surface
scratches
patches
rolled-in_scale

为了清晰看出来各类型缺陷占比,这里对其标注数据进行了可视化:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Together_CZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值