助力移动道路交通环保治理,打赢蓝天保卫战,基于YOLOv9全系列【t/s/m/c/e】+GELAN全系列【t/s/m/c/e】参数模型开发构建车载移动道路场景下道路裸土扬尘自动检测识别系统

在快速发展的现代社会中,工业化的步伐虽推动了城市的繁荣,但环保问题也随之成为我们不得不面对的重大挑战。特别是在移动道路交通领域,路边与路面裸土堆积、道路扬尘等问题,不仅影响城市形象,更对空气质量与居民健康构成了严重威胁。面对这一现状,传统的监测治理手段已难以满足高效、精准的需求,因此,结合新型技术手段,创新环保治理模式成为了必然的选择。随着城市化进程的加速,城市建设工程遍地开花,这无疑为城市发展注入了强大动力。然而,施工过程中产生的裸土堆积问题却日益凸显。这些未经覆盖的裸土,在风吹日晒下极易形成扬尘,随着车辆的往来,更是加剧了扬尘污染的范围与程度。传统的环保治理方式多依赖于人工巡查与市民举报,这种方式不仅效率低下,且往往存在滞后性,难以实现对环保问题的即时响应与有效处置。为了破解这一难题,我们构想了一种基于安防摄像头的无人哨兵智能监测监管系统。该系统利用遍布城市各个角落的安防摄像头作为“眼睛”,实时捕捉道路交通场景中的画面,并将海量视频数据传送至后端智能模型进行处理。通过先进的图像识别与AI算法,系统能够自动检测并识别出裸土堆积、道路扬尘等环保问题,一旦发现异常,立即触发预警机制,将相关信息精准推送至城管、环卫等部门。无人哨兵智能监测监管系统的核心优势在于其强大的数据处理能力与智能化的决策支持。借助于AI的计算能力,系统能够实现对海量视频数据的快速分析与精准识别,从而大大提高了环保问题的发现效率与准确性。与此同时,该系统还具备强大的联动机制,能够将预警信息即时传达至相关部门,确保问题得到及时处置。这种精准高效的治理方式,不仅能够有效减轻环卫工人的巡查负担,更能够将有限的清洁资源集中于真正需要的地方,实现资源的最优配置。

本文正是基于这样的构想设计,想要从实验的角度开发实践移动车载道路场景下的智能化检测识别分析系统,在前面系列博文中我们已经进行了相关的开发实践,感兴趣的话可以自行移步阅读即可:

《助力移动道路交通环保治理,打赢蓝天保卫战,基于YOLOv3全系列【yolov3tiny/yolov3/yolov3spp】参数模型开发构建车载移动道路场景下道路裸土扬尘自动检测识别系统》

《助力移动道路交通环保治理,打赢蓝天保卫战,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建车载移动道路场景下道路裸土扬尘自动检测识别系统》 

《助力移动道路交通环保治理,打赢蓝天保卫战,基于YOLOv7全系列【tiny/l/x】参数模型开发构建车载移动道路场景下道路裸土扬尘自动检测识别系统》

《助力移动道路交通环保治理,打赢蓝天保卫战,基于YOLOv8全系列【n/s/m/l/x】参数模型开发构建车载移动道路场景下道路裸土扬尘自动检测识别系统》

本文主要是想要基于YOLOv9全系列的参数模型来开发构建对应的检测系统,首先看下实例效果:

简单看下实例数据:

关于YOLOv9的论文相关的介绍可以看这里:

《太卷了,目标检测新成员——YOLOv9: Learning What You Want to LearnUsing Programmable Gradient Information他来了》

如果想要基于YOLOv9从零开始开发构建自己的个性化目标检测系统,可以参照这里:

《基于YOLO家族最新模型YOLOv9开发构建自己的个性化目标检测系统从零构建模型完整训练、推理计算超详细教程【以自建数据酸枣病虫害检测为例】》

YOLOv9的作者人为很多模型设计过程中现有的方法忽略了一个事实,即当输入数据经过逐层特征提取和空间变换时,会丢失大量信息。目前,可以缓解这一现象的主要方法为:(1)可逆架构的使用:使用重复输入数据并以显式方式保持输入数据的信息;(2)掩码建模的使用:利用重构损失并采用隐式方式来最大化提取的特征并保留输入信息;以及(3)深监督概念的引入:使用未丢失太多重要信息的浅层特征预先建立从特征到目标的映射,以确保重要信息能够传递到更深的层次。然而,上述方法在训练过程和推理过程中存在不同的缺点。例如,可逆架构需要额外的层来组合重复馈送的输入数据,这将显著增加推理成本。此外,由于输入数据层到输出层不能有太深的路径,这种限制将使得在训练过程中对高阶语义信息的建模变得困难。至于掩码建模,其重构损失有时会与目标损失冲突。此外,大多数掩码机制还会与数据产生不正确的关联。对于深监督机制,它将产生误差积累,如果浅监督在训练过程中丢失信息,那么后续层将无法检索到所需的信息。上述现象在困难任务和小模型上将更为显著。所以作者深入研究数据通过深度网络传输时数据丢失的重要问题,即信息瓶颈和可逆函数进而提出了可编程梯度信息(PGI)以应对深度网络实现多个目标所需的各种变化。PGI可以为目标任务提供完整的输入信息来计算目标函数,从而获得可靠的梯度信息来更新网络权重。此外,还设计了一种新的基于梯度路径规划的轻量级网络架构——广义高效层聚合网络(GELAN)。GELAN的架构证实了PGI在轻量级模型上取得了卓越的成果。
YOLOv9贡献总结如下:
1.我们从可逆函数的角度对现有的深度神经网络架构进行了理论分析,并通过这个过程成功地解释了许多过去难以解释的现象。在此基础上,我们还设计了PGI和辅助可逆分支,并取得了良好的效果。
2.我们设计的PGI解决了深度监控只能用于极深度神经网络架构的问题,从而使新的轻量级架构能够真正应用于日常生活。
3.我们设计的GELAN仅使用传统卷积,比基于最先进技术的深度卷积设计实现了更高的参数使用率,同时显示出轻、快、准确的巨大优势。
4.将所提出的PGI和GELAN相结合,YOLOv9在MS COCO数据集上的目标检测性能在各个方面都大大超过了现有的实时目标检测器。

这里我们一共应用开发了十款模型,分别是GELAN系列的:gelan-t、gelan-s、gelan-m、gelan-c、gelan-e和YOLOv9系列的:yolov9-t、yolov9-s、yolov9-m、yolov9-c、yolov9-e,这里就不再一一给出来所有模型的模型文件了,仅以gelan-s和yolov9-s为例。

【gelan-s】

# YOLOv9

# parameters
nc: 2  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()

# anchors
anchors: 3

# gelan backbone
backbone:
  [
   # conv down
   [-1, 1, Conv, [32, 3, 2]],  # 0-P1/2

   # conv down
   [-1, 1, Conv, [64, 3, 2]],  # 1-P2/4

   # elan-1 block
   [-1, 1, ELAN1, [64, 64, 32]],  # 2

   # avg-conv down
   [-1, 1, AConv, [128]],  # 3-P3/8

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [128, 128, 64, 3]],  # 4

   # avg-conv down
   [-1, 1, AConv, [192]],  # 5-P4/16

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [192, 192, 96, 3]],  # 6

   # avg-conv down
   [-1, 1, AConv, [256]],  # 7-P5/32

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [256, 256, 128, 3]],  # 8
  ]

# elan head
head:
  [
   # elan-spp block
   [-1, 1, SPPELAN, [256, 128]],  # 9

   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [192, 192, 96, 3]],  # 12

   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [128, 128, 64, 3]],  # 15

   # avg-conv-down merge
   [-1, 1, AConv, [96]],
   [[-1, 12], 1, Concat, [1]],  # cat head P4

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [192, 192, 96, 3]],  # 18 (P4/16-medium)

   # avg-conv-down merge
   [-1, 1, AConv, [128]],
   [[-1, 9], 1, Concat, [1]],  # cat head P5

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [256, 256, 128, 3]],  # 21 (P5/32-large)

   # detect
   [[15, 18, 21], 1, DDetect, [nc]],  # DDetect(P3, P4, P5)
  ]

【yolov9-s】

# YOLOv9

# parameters
nc: 2  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()

# anchors
anchors: 3

# gelan backbone
backbone:
  [
   # conv down
   [-1, 1, Conv, [32, 3, 2]],  # 0-P1/2

   # conv down
   [-1, 1, Conv, [64, 3, 2]],  # 1-P2/4

   # elan-1 block
   [-1, 1, ELAN1, [64, 64, 32]],  # 2

   # avg-conv down
   [-1, 1, AConv, [128]],  # 3-P3/8

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [128, 128, 64, 3]],  # 4

   # avg-conv down
   [-1, 1, AConv, [192]],  # 5-P4/16

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [192, 192, 96, 3]],  # 6

   # avg-conv down
   [-1, 1, AConv, [256]],  # 7-P5/32

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [256, 256, 128, 3]],  # 8
  ]

# elan head
head:
  [
   # elan-spp block
   [-1, 1, SPPELAN, [256, 128]],  # 9

   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [192, 192, 96, 3]],  # 12

   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [128, 128, 64, 3]],  # 15

   # avg-conv-down merge
   [-1, 1, AConv, [96]],
   [[-1, 12], 1, Concat, [1]],  # cat head P4

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [192, 192, 96, 3]],  # 18 (P4/16-medium)

   # avg-conv-down merge
   [-1, 1, AConv, [128]],
   [[-1, 9], 1, Concat, [1]],  # cat head P5

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [256, 256, 128, 3]],  # 21 (P5/32-large)
   
   # elan-spp block
   [8, 1, SPPELAN, [256, 128]],  # 22

   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [192, 192, 96, 3]],  # 25

   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [128, 128, 64, 3]],  # 28

   # detect
   [[28, 25, 22, 15, 18, 21], 1, DualDDetect, [nc]],  # Detect(P3, P4, P5)
  ]

这里我们主要开发实践了两组实验:

1、YOLOv9全系列参数模型的对比实验

2、YOLOv9全系列+Gelan全系列模型的对比实验

之所以这样对比,是因为本身YOLOv9就等价于Gelan+PGI,理论上来说专门提出来的PGI技术肯定是对原有模型有提升作用的,简单来理解就是YOLOv9全系列理论上应该是你开发项目的首选。

实验阶段我们保持了相同的参数设置,等待长时期的训练过程结束之后我们来对以上YOLOv9全系列不同参数量级的模型进行纵向的对比分析,如下:

【Precision曲线】
精确率曲线(Precision Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【loss】

Loss曲线反映了模型在训练过程中,损失函数值随迭代次数(或训练轮数)的变化情况。损失函数是用来估量模型的预测值f(x)与真实值y的不一致程度的函数,其值越小,表明模型预测能力越强,性能越好。

【mAP0.5】
mAP0.5,也被称为mAP@0.5或AP50,指的是当Intersection over Union(IoU)阈值为0.5时的平均精度(mean Average Precision)。IoU是一个用于衡量预测边界框与真实边界框之间重叠程度的指标,其值范围在0到1之间。当IoU值为0.5时,意味着预测框与真实框至少有50%的重叠部分。
在计算mAP0.5时,首先会为每个类别计算所有图片的AP(Average Precision),然后将所有类别的AP值求平均,得到mAP0.5。AP是Precision-Recall Curve曲线下面的面积,这个面积越大,说明AP的值越大,类别的检测精度就越高。
mAP0.5主要关注模型在IoU阈值为0.5时的性能,当mAP0.5的值很高时,说明算法能够准确检测到物体的位置,并且将其与真实标注框的IoU值超过了阈值0.5。

【mAP0.5:0.95】
mAP0.5:0.95,也被称为mAP@[0.5:0.95]或AP@[0.5:0.95],表示在IoU阈值从0.5到0.95变化时,取各个阈值对应的mAP的平均值。具体来说,它会在IoU阈值从0.5开始,以0.05为步长,逐步增加到0.95,并在每个阈值下计算mAP,然后将这些mAP值求平均。
这个指标考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。当mAP0.5:0.95的值很高时,说明算法在不同阈值下的检测结果均非常准确,覆盖面广,可以适应不同的场景和应用需求。
对于一些需求比较高的场合,比如安全监控等领域,需要保证高的准确率和召回率,这时mAP0.5:0.95可能更适合作为模型的评价标准。
综上所述,mAP0.5和mAP0.5:0.95都是用于评估目标检测模型性能的重要指标,但它们的关注点有所不同。mAP0.5主要关注模型在IoU阈值为0.5时的性能,而mAP0.5:0.95则考虑了多个IoU阈值下的平均精度,从而更全面、更准确地评估模型性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

完成第一组实验也就是YOLOv9全系列参数模型的对比分析可视化之后,接下来我们按照同样的参数配置完成Gelan全系列参数模型的开发训练,之后采用上述相同的方式来进行十款模型的对比可视化,这里就不再赘述了,直接来看效果。

【F1值曲线】

【loss曲线】

【mAP0.5曲线】

【mAP0.5:0.95曲线】

【Precision曲线】

【Recall曲线】

综合全系列十二款不同参数量级模型的开发实验对比结果来看:十二款不同参数量级的模型效果上拉开了层次分明的差距,不同系列模型之间的差距相对明显,t系列的模型参数最少效果也最差,s系列的模型效果次之,m及其以上参数系列的模型效果则较为相近,综合参数量来考虑,这里我们考虑使用yolov9-c来作为线上推理模型。

接下来看下yolov9-c模型的详细情况。

【离线推理实例】

【Batch实例】

【混淆矩阵】

【F1值曲线】

【Precision曲线】

【PR曲线】

【Recall曲线】

【训练可视化】

技术的发展需要我们与实际的生产作业相融合,做到与时俱进,本文我们从实验的角度来进行了初步的开发实践工作,仅作为抛砖引玉的工作,随着技术的不断进步与应用的不断深化,无人哨兵智能监测监管系统必将在未来的环保治理中发挥更加重要的作用。我们有理由相信,在科技与环保的深度融合下,我们终将打赢这场蓝天保卫战,为子孙后代留下一个更加清新、宜居的地球家园。

  • 38
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Together_CZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值