3.1 目标检测之YOLOv1算法学习笔记

one-stage&two-stage碎碎念…

目标检测one-stage与two-stage的区别
one-stage:YOLO系列——直接回归
解释one-stage:直接回归物体的类别概率和位置坐标值(无region proposal),但准确度低,速度相遇two-stage快。
two-stage:Faster-CNN系列——有一个预选的过程
解释two-stage:先由算法生成一系列作为样本的候选框,再通过卷积神经网络进行样本分类。

YOLO-v1系列

1、基本理解

  • 经典的one-stage
  • you only look once
  • 把检测问题转化成回归问题,一个CNN就搞定了
  • 可以对视频进行实时检测,应用领域非常广

2、基本思路:bounding_box与confidence

在这里插入图片描述
1)v1bounding_box回归问题:

  • 主要先回归候选框bounding box左一SxS中黄色格子)的长宽,对比(h1,w1)与(h2,w2)等长宽的回归效果,看哪个合适;
  • 并且看回归任务中候选框的起始位置(x,y)哪个合适
  • 整体预测(x,y,w,h)候选框的起始位置(x,y)和候选框的长宽(w,h)

2)候选框与真实值之间的IOU计算,找IOU值最大的点
IOU(交并比)理解
3) confidence置信度:表示检验框里是否有目标特征值的置信度

3、模型具体阐释

1)整体网络架构

在这里插入图片描述

2)yolo模型中出现的每个字母的含义

在这里插入图片描述

  • (x,y)起始坐标位置
  • (w,h)候选框Bounding_Box的长宽
  • (c)识别目标物体的置信度confidence
  • (B)候选框个数

在这里插入图片描述

  • SxS相当于网格大小
  • 5指的是x,y,w,h,c五个元素
  • C类别
    结果图
    在这里插入图片描述

3)损失函数

在这里插入图片描述

4、优缺点在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值