one-stage&two-stage碎碎念…
目标检测one-stage与two-stage的区别
one-stage:YOLO系列——直接回归
解释one-stage:直接回归物体的类别概率和位置坐标值(无region proposal),但准确度低,速度相遇two-stage快。
two-stage:Faster-CNN系列——有一个预选的过程
解释two-stage:先由算法生成一系列作为样本的候选框,再通过卷积神经网络进行样本分类。
YOLO-v1系列
1、基本理解
- 经典的one-stage
- you only look once
- 把检测问题转化成回归问题,一个CNN就搞定了
- 可以对视频进行实时检测,应用领域非常广
2、基本思路:bounding_box与confidence
1)v1bounding_box回归问题:
- 主要先回归候选框bounding box(左一SxS中黄色格子)的长宽,对比(h1,w1)与(h2,w2)等长宽的回归效果,看哪个合适;
- 并且看回归任务中候选框的起始位置(x,y)哪个合适
- 整体预测(x,y,w,h)候选框的起始位置(x,y)和候选框的长宽(w,h)
2)候选框与真实值之间的IOU计算,找IOU值最大的点
IOU(交并比)理解
3) confidence置信度:表示检验框里是否有目标特征值的置信度
3、模型具体阐释
1)整体网络架构
2)yolo模型中出现的每个字母的含义
- (x,y)起始坐标位置
- (w,h)候选框Bounding_Box的长宽
- (c)识别目标物体的置信度confidence
- (B)候选框个数
- SxS相当于网格大小
- 5指的是x,y,w,h,c五个元素
- C类别
结果图: