【线性代数】1-1:线性组合(Linear Combinations)

原文地址1:https://www.face2ai.com/Math-Linear-Algebra-Chapter-1-1转载请标明出处

Abstract: 线性组合详细说明
Keywords: Linear Combinations

线性组合

列向量

上文我们简单的看了一眼核心,核心也是最简单的东西,在我国,初中高中的小盆友们就应该已经知道向量加减法了,但是美国的小朋友们可能到高中大学才接触,所以书中给出了详细的加减乘除算法,我们必须明确一点,一般说道的向量和写出来的都是列向量,就是竖着的
like this one:
[ 4 5 ] \begin{bmatrix} 4\\5 \end{bmatrix} [45]

向量加法和乘法计算

这里简单写一下加法和乘法计算

VECTOR ADDITION:
v = [ v 1 v 2 ] w = [ w 1 w 2 ] \textbf{v}=\begin{bmatrix} v_1\\v_2 \end{bmatrix}\\ \textbf{w}=\begin{bmatrix} w_1\\w_2 \end{bmatrix}\\ v=[v1v2]w=[w1w2]
add to:
v + w = [ v 1 + w 1 v 2 + w 2 ] \textbf{v}+\textbf{w}=\begin{bmatrix} v_1+w_1\\v_2+w_2 \end{bmatrix}\\ v+w=[v1+w1v2+w2]

VECTOR MULTIPLICATION:
2 v = [ 2 v 1 2 v 2 ] − v = [ − v 1 − v 2 ] 2\textbf{v}=\begin{bmatrix} 2v_1\\2v_2 \end{bmatrix}\\ -\textbf{v}=\begin{bmatrix} -v_1\newline -v_2 \end{bmatrix}\\ 2v=[2v12v2]v=[v1v2]
(写公式真累!!)
注意零向量和数字常量0的不同

线性组合

c v + d w c\textbf{v}+d\textbf{w}\\ cv+dw
就是线性代数的基础

定义:
the sum of c v c\textbf{v} cv and d w d\textbf{w} dw is a linear combination of v \textbf{v} v and w \textbf{w} w

向量的表示

这个大家都会,画箭头嘛,从0点,画向坐标位置,标个箭头就okay了
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-DMWlVFi6-1592543688794)(https://tony4ai-1251394096.cos.ap-hongkong.myqcloud.com/blog_images/Math-Linear-Algebra-Chapter-1-1/加法.png)]

Important Questions

Suppose
u \textbf{u} u v \textbf{v} v w \textbf{w} w are three-dimensional non-zero:

c u c\textbf{u} cu fill a Linear

c u + d v c\textbf{u}+d\textbf{v} cu+dv fill a plane

c u + d v + e w c\textbf{u}+d\textbf{v}+e\textbf{w} cu+dv+ew fill a space(3d)

前提是这三个向量不在同一直线或同一个二维平面上,上面的三个important才成立!

总结

此篇详细说明了线性组合的一些基本问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值