原文地址1:https://www.face2ai.com/Math-Linear-Algebra-Chapter-1-1转载请标明出处
Abstract: 线性组合详细说明
Keywords: Linear Combinations
线性组合
列向量
上文我们简单的看了一眼核心,核心也是最简单的东西,在我国,初中高中的小盆友们就应该已经知道向量加减法了,但是美国的小朋友们可能到高中大学才接触,所以书中给出了详细的加减乘除算法,我们必须明确一点,一般说道的向量和写出来的都是列向量,就是竖着的
like this one:
[
4
5
]
\begin{bmatrix} 4\\5 \end{bmatrix}
[45]
向量加法和乘法计算
这里简单写一下加法和乘法计算
VECTOR ADDITION:
v
=
[
v
1
v
2
]
w
=
[
w
1
w
2
]
\textbf{v}=\begin{bmatrix} v_1\\v_2 \end{bmatrix}\\ \textbf{w}=\begin{bmatrix} w_1\\w_2 \end{bmatrix}\\
v=[v1v2]w=[w1w2]
add to:
v
+
w
=
[
v
1
+
w
1
v
2
+
w
2
]
\textbf{v}+\textbf{w}=\begin{bmatrix} v_1+w_1\\v_2+w_2 \end{bmatrix}\\
v+w=[v1+w1v2+w2]
VECTOR MULTIPLICATION:
2
v
=
[
2
v
1
2
v
2
]
−
v
=
[
−
v
1
−
v
2
]
2\textbf{v}=\begin{bmatrix} 2v_1\\2v_2 \end{bmatrix}\\ -\textbf{v}=\begin{bmatrix} -v_1\newline -v_2 \end{bmatrix}\\
2v=[2v12v2]−v=[−v1−v2]
(写公式真累!!)
注意零向量和数字常量0的不同
线性组合
c
v
+
d
w
c\textbf{v}+d\textbf{w}\\
cv+dw
就是线性代数的基础
定义:
the sum of
c
v
c\textbf{v}
cv and
d
w
d\textbf{w}
dw is a linear combination of
v
\textbf{v}
v and
w
\textbf{w}
w
向量的表示
这个大家都会,画箭头嘛,从0点,画向坐标位置,标个箭头就okay了
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-DMWlVFi6-1592543688794)(https://tony4ai-1251394096.cos.ap-hongkong.myqcloud.com/blog_images/Math-Linear-Algebra-Chapter-1-1/加法.png)]
Important Questions
Suppose
u
\textbf{u}
u
v
\textbf{v}
v
w
\textbf{w}
w are three-dimensional non-zero:
c u c\textbf{u} cu fill a Linear
c u + d v c\textbf{u}+d\textbf{v} cu+dv fill a plane
c u + d v + e w c\textbf{u}+d\textbf{v}+e\textbf{w} cu+dv+ew fill a space(3d)
前提是这三个向量不在同一直线或同一个二维平面上,上面的三个important才成立!
总结
此篇详细说明了线性组合的一些基本问题