学习笔记:使用opencv做双目测距(相机标定+立体匹配+测距).

装载:https://www.cnblogs.com/daihengchen/p/5492729.html

    最近在做双目测距,觉得有必要记录点东西,所以我的第一篇博客就这么诞生啦~

     双目测距属于立体视觉这一块,我觉得应该有很多人踩过这个坑了,但网上的资料依旧是云里雾里的,要么是理论讲一大堆,最后发现还不知道怎么做,要么就是直接代码一贴,让你懵逼。 所以今天我想做的,是尽量给大家一个明确的阐述,并且能够上手做出来。

一、 标定

    首先我们要对摄像头做标定,具体的公式推导在learning opencv中有详细的解释,这里顺带提一句,这本书虽然确实老,但有些理论、算法类的东西里面还是讲的很不错的,必要的时候可以去看看。

   Q1:为什么要做摄像头标定?

      A:  标定的目的是为了消除畸变以及得到内外参数矩阵,内参数矩阵可以理解为焦距相关,它是一个从平面到像素的转换,焦距不变它就不变,所以确定以后就可以重复使用,而外参数矩阵反映的是摄像机坐标系与世界坐标系的转换,至于畸变参数,一般也包含在内参数矩阵中。从作用上来看,内参数矩阵是为了得到镜头的信息,并消除畸变,使得到的图像更为准确,外参数矩阵是为了得到相机相对于世界坐标的联系,是为了最终的测距。

     ps1:关于畸变,大家可以看到自己摄像头的拍摄的画面,在看矩形物体的时候,边角处会有明显的畸变现象,而矫正的目的就是修复这个。

     ps2:我们知道双目测距的时候两个相机需要平行放置,但事实上这个是很难做到的,所以就需要立体校正得到两个相机之间的旋转平移矩阵,也就是外参数矩阵。  

                

   Q2:如何做摄像头的标定?

      A:这里可以直接用opencv里面的sample,在opencv/sources/sample/cpp里面,有个calibration.cpp的文件,这是单目的标定,是可以直接编译使用的,这里要注意几点:

               1.棋盘

       棋盘也就是标定板是要预先打印好的,你打印的棋盘的样式决定了后面参数的填写,具体要求也不是很严谨,清晰能用就行。之所用棋盘是因为他检测角点很方便,and..你没得选。。

               2. 参数

       一般设置为这个样子:-w 6 -h 8 -s 2 -n 10 -o camera.yml -op -oe [<list_of_views.txt>]  ,这是几个重要参数的含义:

                   -w <board_width>         # 图片某一维方向上的交点个数
                   -h <board_height>        # 图片另一维上的交点个数
                   [-n <number_of_frames>]  # 标定用的图片帧数
                   [-s <square_size>]       # square size in some user-defined units (1 by default)
                   [-o <out_camera_params>] # the output filename for intrinsic [and extrinsic] parameters
                   [-op]                    # write detected feature points
                   [-oe]                    # write extrinsic parameters
            
             
             
           可以发现 -w -h是棋盘的长和高,也就是有几个黑白交点,-s是每个格子的长度,单位是cm 
             长和高一定要数对,不然程序在识别角点的时候会识别不出来的。

                      最终得到的yml文件,就是单目标定的参数矩阵,之后使用它就可以得到校正后的图像啦。                                                            

           3. 需要对程序做一些修改,这是我遇到的问题,就是他的读取摄像头的代码在我这边没有用,所以我自己重新修改了,不知道大家会  不会碰到这个问题。

             

               然后就是双目标定了,同样的地方,找到stereo_calib.cpp,这个参数比较简单,只要确定长、宽和输入的一个xml文件(在之前          的文件夹里面),这个文件是为了读取图片用的,你需要自己用固定好的双目摄像头拍14对棋盘图片,命名为 left01,right01......这样          一系列的名字,另外,最简单的方法就是把自己拍的照片放到相应的工程下,以及stereo开头的那个xml文件也复制过去这个程序代码            并不复杂,可以稍微研究一下,工程向的代码确实严谨,各种情况都考虑到了,比起自己之前做的那个小项目不知道高到哪里去了

        这里也有几个注意点(坑):

              1.老生常谈的问题,长宽一定要写对!!! 这个不多说了,都是泪。

 

 2.代码的核心函数 static void  StereoCalib(const vector<string>& imagelist, Size boardSize, bool useCalibrated=true, bool  showRectified=true),注意搞清楚参数的意义,因为我是用的单目标定好的摄像头拍摄的图片,不需要再校正了,所以第三个参数要用false,这样最后的结果才能看,不说了,都是泪...

 

              3.另外注意到计算rms误差的时候,结束条件的几个参数是可以调整的,

double rms = stereoCalibrate(objectPoints, imagePoints[0], imagePoints[1],
cameraMatrix[0], distCoeffs[0],
cameraMatrix[1], distCoeffs[1],
imageSize, R, T, E, F,
TermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 100, 1e-5),
CV_CALIB_FIX_ASPECT_RATIO +CV_CALIB_ZERO_TANGENT_DIST +CV_CALIB_SAME_FOCAL_LENGTH +CV_CALIB_RATIONAL_MODEL +CV_CALIB_FIX_K3 + CV_CALIB_FIX_K4 + CV_CALIB_FIX_K5)

下面这段话是某度百科上的:

        这个函数计算了两个摄像头进行立体像对之间的转换关系。如果你有一个立体相机的相对位置,并且两个摄像头的方向是固定的,以及你计算了物体相对于第一照相机和第二照相机的姿态,(R1,T1)和(R2,T2),各自(这个可以通过solvepnp()做到)通过这些姿态确定。你只需要知道第二相机相对于第一相机的位置和方向。

        除了立体的相关信息,该函数也可以两个相机的每一个做一个完整的校准。然而,由于在输入数据中的高维的参数空间和噪声的,可能偏离正确值。如果每个单独的相机内参数可以被精确估计(例如,使用calibratecamera()),建议这样做,然后在本征参数计算之中使CV_CALIB_FIX_INTRINSIC的功能。否则,如果一旦计算出所有的参数,它将会合理的限制某些参数,例如,传CV_CALIB_SAME_FOCAL_LENGTH and CV_CALIB_ZERO_TANGENT_DIST,这通常是一个合理的假设。

        

      Q3:标定之后做什么呢?

       

      A: 写到这我发现把单目和双目的一起写确实有点乱...不过,开弓没有回头箭!(不是因为懒!!)

          首先还是单目,单目的使用很简单,使用标定得到的参数进行校正就行了,代码如下:

void loadCameraParams(Mat &cameraMatrix, Mat &distCoeffs)
{
FileStorage fs("camera.yml", FileStorage::READ);//这个名字就是你之前校正得到的yml文件

fs["camera_matrix"] >> cameraMatrix;
fs["distortion_coefficients"] >> distCoeffs;
}

Mat calibrator(Mat &view)//需要校正处理的图片
{
vector<string> imageList;
static bool bLoadCameraParams = false;
static Mat cameraMatrix, distCoeffs, map1, map2;
Mat rview;
Size imageSize, newImageSize;

if (!view.data)
return Mat();

imageSize.width = view.cols;
imageSize.height = view.rows;

newImageSize.width = imageSize.width;
newImageSize.height = imageSize.height;

if (bLoadCameraParams == false)
{
loadCameraParams(cameraMatrix, distCoeffs);
bLoadCameraParams = true;
initUndistortRectifyMap(cameraMatrix, distCoeffs, Mat(),
getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, 1, newImageSize, 0), newImageSize, CV_16SC2, map1, map2);
}

//undistort( view, rview, cameraMatrix, distCoeffs, cameraMatrix );
remap(view, rview, map1, map2, INTER_LINEAR);

imshow("左图", rview);
//int c = 0xff & waitKey();

rview.copyTo(view);

return view;
}

                     这样最后就可以得到校正后消除畸变的图片。

                     OK,接下来显然就是双目啦,双目校正之后的工作就比较多了,我准备另开一节来说...                                  

 二、立体匹配

    这是一个很大的题目,网上的资料也很多,所以我想说的是我的一些理解。

       这里最好的方法是从后往前说,我们首先需要理解测距的原理。这个很多人看了一大堆还不明白(其实只有我自己吧..),相似三角形测距,这种东西小学生都能搞清楚,但两摄像头到底怎么做到的,就是我们需要搞清楚的。

      首先需要搞清楚一个非常重要的概念,视差,搞清楚视差,后面的就简单了 ,老生常谈的问题我不想多说,网上那些一大堆,我希望给大家的是一些明了的东西

                                                                                       

                                                                                        

                                                                                            

       这三幅图看明白了就行,其实视差确实很简单,但很多人都没去理清楚,第一幅图是三维世界的一个点在两个相机的成像,我们可以相信的是,这两个在各自相机的相对位置基本不可能是一样的,而这种位置的差别,也正是我们眼睛区别3D和2D的关键,将右边的摄像机投影到左边,怎么做呢?因为他的坐标和左边相机的左边相距Tx(标定测出来的外参数),所以它相当于在左边的相机对三维世界内的(x-tx,y,z)进行投影,所以这时候,一个完美的形似三角形就出来,这里视差就是d=x-x‘,

                  

              得到视差以后,再用相似三角形......也就得到了深度也就是距离啦。

       结束了么??并没有....这样做确实很完美,但是问题来了:1.当我在左边相机确定一个点的时候,我怎么在右边找到这个点? 2.我左边点所在的行一点跟右边点所在的行上的像素一定完全一样么?

             解决第一个问题的方法就是立体匹配了。

          Q1:立体匹配是什么,怎么进行立体匹配?

          A:简单的回答就是:立体匹配就是解决上面问题的东西啦....其实我觉得这样就是也够了,有些成熟的算法,未必需要钻研太深,毕竟我这种实在的菜鸡,还是工程导向的..学术的事,日后再说! 

              opencv中提供了很多的立体匹配算法,类似于局部的BM,全局的SGBM等等,这些算法的比较大概是,速度越快的效果越差,如果不是很追究时效性,并且你的校正做的不是很好的话..推荐使用SGBM,算法的具体原理大家可以去百度,不难。这里我想提一下的是为什么做立体匹配有用,原因就是极线约束,这也是个很重要的概念,理解起来并不难,左摄像机上的一个点,对应三维空间上的一个点,当我们要找这个点在右边的投影点时,有必要把这个图像都遍历一边么,当然不用...

                                                               

             如上图,显然,PL对应的P这个点一定在一条极线上,只要在这条线上找就行了,更明显的是下面这个图:

                                                         

      最后,怎么在opencv里面实现呢..机智的我又找到了sample..找到stereo_match.cpp这个文件,命令行设置为:left01.jpg right02.jpg --algorithm=hh --blocksize=5 --max-disparity=256  --scale=1.0 --no-display -i intrinsics.yml -e extrinsics.yml -o disparity.jpg同意给几个建议:

              1.参数的意义:

-max-disparity 是最大视差,可以理解为对比度,越大整个视差的range也就越大,这个要求是16的倍数

 --blocksize 一般设置为5-29之间的奇数,应该是局部算法的窗口大小。

另,注意带上参数-i intrinsics.yml -e extrinsics.yml,毕竟咱有校正参数...

              2.后面有两行代码:

                                   reprojectImageTo3D(disp, xyz, Q, true);

                                   saveXYZ(point_cloud_filename, xyz);

                      这个就是得到图片的三维坐标,Z也就是我们最终要求的深度啦。

           

       第二个问题,行和行是对应的么?   之前我们说过,双目校正的目的就是为了得到两个平行的摄像头,所以当程序运行完毕以后,它会把两幅图像显示出来,并作出一系列的平行线,这样你会看到线上的点大致是呈对应关系,左边的角点对应右边的交点,所以,经过匹配和校正后,是对应的。

三、总结

   双目拖了很久,一直没做,最重要的原因就是...我没有两个一样的摄像头,所以最后也没有贴出效果图,因为两个不一样的摄像头,做出来的东西画面太美我不敢看,不过最终搞清楚了整个流程和原理,还是比较开心的。这里面像校正和匹配的算法,我只是有所理解,因为以后不一定走3D这一块,所以也没有过去深入,如果用到在去研究,其实也不晚..总之,第一篇博客,完工啦~

 

实现效果:http://v.youku.com/v_show/id_XMTU2Mzk0NjU3Ng==.html 如何在你的电脑上运行这个程序? 1,它需要cvblobslib这一个opencv的扩展库来实现检测物体与给物体画框的功能,具体安装信息请见: http://dsynflo.blogspot.com/2010/02/cvblobskib-with-opencv-installation.html,当你配置好cvblobslib之后,你可以用这一的程序进行测试:http://dl.dropbox.com/u/110310945/Blobs%20test.rar 2,视频中两个摄像头之间的距离是6cm,你可以根据你摄像头的型号,来选择合适的距离来达到最好的效果。 3,在进行测距之前,首先需要对摄像头进行标定,那么如何标定呢? 在stdafx.h中把"#define CALIBRATION 0"改成 “#define CALIBRATION 1”表示进行标定,标定之后,你就可以在工程目录下的"CalibFile" 文件夹中得到标定信息的文件。如果标定效果还不错,你就可以吧"#define CALIBRATION " 改成0,以后就不需要再标定,直接使用上一次的标定信息。你还需要把"#define ANALYSIS_MODE 1"这行代码放到stdafx.h中。 4,视频中使用的是10*7的棋牌格,共摄录40帧来计算摄像头的各种参数,如果你像使用其他棋盘格,可以在 "StereoFunctions.cpp"文件中修改相应参数。 5,如果你无法打开摄像头,可以在 "StereoGrabber.cpp"文件中修改代码“cvCaptureFromCAM(index)”中index的值。 6,About computing distance: it interpolates the relationship between depth-value and real-distance to third degree polynomial. So i used excel file "interpolation" for interpolation to find k1 to k4, you should find your own value of these parameters. 7,你可以通过调整控制窗口中各个参数的滑块,从而来得到更好的视差图。 8,在目录下的”distance“文件夹中,有计算距离信息的matlab代码。 9,如果你想了解基本的理论,可以看一下这个文档:http://scholar.lib.vt.edu/theses/available/etd-12232009-222118/unrestricted/Short_NJ_T_2009.pdf 视频中环境:vs2008,opencv2.1
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值