【cs231n】lecture 8 Deep Learning Software

本文对比了CPU与GPU在处理深度学习任务时的差异,并详细介绍了三个主流深度学习框架——TensorFlow、PyTorch和Caffe的特点与使用。在TensorFlow中,重点讲解了其计算图、Keras和Tensorboard。PyTorch的三层抽象(Tensor、Variable和Model)以及优化、预训练模型和数据加载。而对于Caffe,则强调了其配置文件驱动的网络构建方式。
摘要由CSDN通过智能技术生成

CPU vs GPU

GPU(Graphics Processing Unit图形处理单元),最初用于渲染计算机图形。
相同点:GPU和CPU都是一种通用的计算机器,可以执行程序和指令。
不同点:
在这里插入图片描述
GPU单个核的运行速度比CPU慢,执行的操作也没有CPU多,GPU的单个核无法独立完成工作,他们需要共同协作,多个GPU的核共同执行同一项任务。
CPU有cache,但是相对比较小,CPU的内存都是依赖于系统内存;GPU内置了RAM。
CPU对于信道处理来说已经足够了,GPU更擅长处理高度并行处理的算法,典型的就是矩阵乘法。

在GPU上可以写出可以直接运行的程序,CUDA只能用于NVIDIA,并且得到很大的优化,而OpenCL可以用于NVIDIA和AMD,优化不如CUDA做得好。
在这里插入图片描述

Deep Learning Frameworks

使用深度学习框架的好处:

  1. 易于计算大型计算图
  2. 易于从计算图中计算出梯度
  3. 这些框架在GPU上高效运行,不用开发者关注一些硬件上面的细节
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值