文章目录
CPU vs GPU
GPU(Graphics Processing Unit图形处理单元),最初用于渲染计算机图形。
相同点:GPU和CPU都是一种通用的计算机器,可以执行程序和指令。
不同点:
GPU单个核的运行速度比CPU慢,执行的操作也没有CPU多,GPU的单个核无法独立完成工作,他们需要共同协作,多个GPU的核共同执行同一项任务。
CPU有cache,但是相对比较小,CPU的内存都是依赖于系统内存;GPU内置了RAM。
CPU对于信道处理来说已经足够了,GPU更擅长处理高度并行处理的算法,典型的就是矩阵乘法。
在GPU上可以写出可以直接运行的程序,CUDA只能用于NVIDIA,并且得到很大的优化,而OpenCL可以用于NVIDIA和AMD,优化不如CUDA做得好。
Deep Learning Frameworks
使用深度学习框架的好处:
- 易于计算大型计算图
- 易于从计算图中计算出梯度
- 这些框架在GPU上高效运行,不用开发者关注一些硬件上面的细节