一、Introduction
Meta learning = Learn to learn
二、Meta Learning
1、比较
与Life-long的区别:
- Life-long:所有任务使用一个模型
- Meta:每个任务可能有不同的模型
与Machine Learning的区别:
2、算法步骤
# Step 1:定义一个learning algorithm的集合;
# 初始化参数不一样,表示不一样的学习算法
# Step 2:评价一个learning algorithm的好坏;
# N个Task任务的损失函数之和
Meta learning的样例的一个个的Task。经常和few-short learning配合使用。
# Step 3:找到最好的F;
3、典型案例
4、方法
1. MAML–学习最好的初始化参数
MAML方法的限制:所有task的model structure必须一致。
MAML和Model Pre-training的区别:
Model Pre-training注重模型现在表现怎么样;而MAML注重的是模型经过训练之后表现得怎么样,注重模型的潜力。
MAML训练过程中只update一次,原因是:
- 速度快。如果update几千次,每个task上训练一个小时,那么时间太久了。
- 如果只update一次就可以得到很好的参数,,说明这种做法很强,因此将这个作为目标。
- 可以在测试的时候多update几次。
- 对于few-shot的任务,如果update很多次,容易过拟合。
2. Reptile–