Meta learning

一、Introduction

Meta learning = Learn to learn

二、Meta Learning

1、比较

与Life-long的区别:

  • Life-long:所有任务使用一个模型
  • Meta:每个任务可能有不同的模型

与Machine Learning的区别:
在这里插入图片描述
在这里插入图片描述

2、算法步骤

# Step 1:定义一个learning algorithm的集合;
# 初始化参数不一样,表示不一样的学习算法

在这里插入图片描述

# Step 2:评价一个learning algorithm的好坏;
# N个Task任务的损失函数之和

在这里插入图片描述
Meta learning的样例的一个个的Task。经常和few-short learning配合使用。

# Step 3:找到最好的F;

在这里插入图片描述

3、典型案例

在这里插入图片描述
在这里插入图片描述

4、方法

在这里插入图片描述

1. MAML–学习最好的初始化参数
在这里插入图片描述
MAML方法的限制:所有task的model structure必须一致。
MAML和Model Pre-training的区别:
在这里插入图片描述
在这里插入图片描述
Model Pre-training注重模型现在表现怎么样;而MAML注重的是模型经过训练之后表现得怎么样,注重模型的潜力。

在这里插入图片描述

MAML训练过程中只update一次,原因是:

  • 速度快。如果update几千次,每个task上训练一个小时,那么时间太久了。
  • 如果只update一次就可以得到很好的参数,,说明这种做法很强,因此将这个作为目标。
  • 可以在测试的时候多update几次。
  • 对于few-shot的任务,如果update很多次,容易过拟合。

2. Reptile–
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值