C++使用OpenCV时计算MSE

15 篇文章 0 订阅

前言

在这里插入图片描述

OpenCV —— Open Source Computer Vision

OpenCV是一个跨平台的计算机视觉库。是由英特尔公司发起并参与开发,以BSD许可证授权发行,可以在商业和研究领域中免费使用。可用于开发实时的图像处理、计算机视觉以及模式识别程序。

在图像处理任务中,评价图像质量标准一般使用MSE(Mean Square Error ,均方误差)和 PSNR(Peak Signal Noise Ratio,峰值信噪比)。

均方误差在统计学中是对于无法观察的参数的一个估计函数,其定义为:
在这里插入图片描述
它是“误差”的平方的期望值。误差就是估计值与被估计量的差。

在图像质量评估时一般用来比较目标图与原图的差异。

使用

在使用OpenCV时可以通过矩阵操作来避免for循环嵌套计算。

需要注意的是乘除操作一般要注意将图像本身的uint8转换成float后再做,否则精度误差可能会导致较大偏差。

#include <iostream>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#define CV_LOAD_IMAGE_COLOR 1

double compute_MSE(cv::Mat Mat1, cv::Mat Mat2)
{

    cv::Mat M1 = Mat1.clone();
    cv::Mat M2 = Mat2.clone();
    cv::Mat Diff;
    // 提前转换为32F精度
    M1.convertTo(M1,CV_32F);
    M2.convertTo(M2,CV_32F);
    Diff.convertTo(Diff,CV_32F);
    
    cv::absdiff(M1,M2,Diff); //  Diff = | M1 - M2 |

    Diff=Diff.mul(Diff);     // | M1 - M2 |.^2
    cv::Scalar S = cv::sum(Diff);  //分别计算每个通道的元素之和

    double sse;   // square error
    if (Diff.channels()==3)
        sse = S.val[0] +S.val[1] + S.val[2];  // sum of all channels
    else
        sse = S.val[0];

    int nTotalElement = M2.channels()*M2.total();

    double mse = ( sse / (double)nTotalElement );  //

    return mse;
}

int main(int argc, char *argv[]) {
  std::string input_img_path1 = argv[1];
  std::string input_img_path2 = argv[2];
  cv::Mat img1, img2;
  img1 = cv::imread(input_img_path1, CV_LOAD_IMAGE_COLOR);
  img2 = cv::imread(input_img_path2, CV_LOAD_IMAGE_COLOR);
  // 注意两张图片大小需要一致
  double mse = compute_MSE(img1, img2);
  std::cout << "MSE: "<< mse << std::endl;
  return 0;

在这里插入图片描述

参考资料

[1] 均方误差 - 维基百科,自由的百科全书
[2] Opencv如何计算PSNR和MSE

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TracelessLe

❀点个赞加个关注再走吧❀

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值