前言
OpenCV —— Open Source Computer Vision
OpenCV是一个跨平台的计算机视觉库。是由英特尔公司发起并参与开发,以BSD许可证授权发行,可以在商业和研究领域中免费使用。可用于开发实时的图像处理、计算机视觉以及模式识别程序。
在图像处理任务中,评价图像质量标准一般使用MSE(Mean Square Error ,均方误差)和 PSNR(Peak Signal Noise Ratio,峰值信噪比)。
均方误差在统计学中是对于无法观察的参数的一个估计函数,其定义为:
它是“误差”的平方的期望值。误差就是估计值与被估计量的差。
在图像质量评估时一般用来比较目标图与原图的差异。
使用
在使用OpenCV时可以通过矩阵操作来避免for循环嵌套计算。
需要注意的是乘除操作一般要注意将图像本身的uint8转换成float后再做,否则精度误差可能会导致较大偏差。
#include <iostream>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#define CV_LOAD_IMAGE_COLOR 1
double compute_MSE(cv::Mat Mat1, cv::Mat Mat2)
{
cv::Mat M1 = Mat1.clone();
cv::Mat M2 = Mat2.clone();
cv::Mat Diff;
// 提前转换为32F精度
M1.convertTo(M1,CV_32F);
M2.convertTo(M2,CV_32F);
Diff.convertTo(Diff,CV_32F);
cv::absdiff(M1,M2,Diff); // Diff = | M1 - M2 |
Diff=Diff.mul(Diff); // | M1 - M2 |.^2
cv::Scalar S = cv::sum(Diff); //分别计算每个通道的元素之和
double sse; // square error
if (Diff.channels()==3)
sse = S.val[0] +S.val[1] + S.val[2]; // sum of all channels
else
sse = S.val[0];
int nTotalElement = M2.channels()*M2.total();
double mse = ( sse / (double)nTotalElement ); //
return mse;
}
int main(int argc, char *argv[]) {
std::string input_img_path1 = argv[1];
std::string input_img_path2 = argv[2];
cv::Mat img1, img2;
img1 = cv::imread(input_img_path1, CV_LOAD_IMAGE_COLOR);
img2 = cv::imread(input_img_path2, CV_LOAD_IMAGE_COLOR);
// 注意两张图片大小需要一致
double mse = compute_MSE(img1, img2);
std::cout << "MSE: "<< mse << std::endl;
return 0;