【干货收藏】一文掌握多模态RAG:从CLIP嵌入到工具调用的完整工程实现!

部署运行你感兴趣的模型镜像

想象一个场景——你在手机里上传一张工程图、几段合同文本和一张含有关键参数的表格,你的助手不光能读懂文字,还能把图像里的表格结构化、把图中文字和图像内容联系起来,最终回答“这份合同在第几页出现了 X 条款,图中哪个区域对应该条款的参数?”这就是成熟的多模态 RAG(Retrieval-Augmented Generation)要达到的水平。本篇把实现这一目标的三个关键技术点讲清楚:CLIP 嵌入、 多模态提示、工具调用。读完你会知道工程上该怎么做、为什么要这样做、以及常见坑怎么规避。

一、CLIP 嵌入:把图片和文本放进同一个“语义房间”

要点一句话: CLIP 通过对比学习把文本和图像映射到同一向量空间,支持跨模态检索与零样本推理,是多模态 RAG 的向量检索基础。

1、为什么需要它

传统检索系统把图片当作“不可直接检索”的对象,或者靠 OCR 先把图像变成文本再检索。CLIP 的厉害在于你可以直接把文本查询和图片做相似度比较——文本可以检索图片,图片也可以检索图片,适合场景检索、相似图片召回、以及对没有专门标签的新类别做零样本分类。

2、对比学习直观理解(用人脸解锁类比)

  • 你不想为每台设备收集“不是这个人”的完整样本集;
  • 对比学习的目标是学习一个共享嵌入空间:相同语义的(文本,图片)对在空间里靠得近,语义不匹配的对被拉远;
  • 在实现上用的就是对比损失 / 暹罗结构(siamese-like 或双编码器),CLIP 在文本和图像上分别用独立编码器,然后通过对比目标把两个模态对齐。

3、工程实践(简短流程与代码示例)

流程:

  1. 准备文本-图片对数据集(或直接用公开预训练模型)。
  2. 用文本编码器和图像编码器分别生成嵌入。
  3. 归一化后计算相似度(例如余弦相似度),用于检索或排序。
  4. 将图像嵌入进向量数据库(FAISS、Milvus、Weaviate 等),用于 RAG 的检索阶段。

简短示例(Hugging Face + PyTorch):

4、常见工程细节与建议

  • 若数据量大,优先使用预训练 CLIP 并做少量领域微调(contrastive fine-tuning)。
  • 嵌入维度/归一化影响检索质量:务必把所有向量做 L2 归一化再做余弦相似度。
  • 对图像检索:构建索引时做批量向量化并用 ANN 索引(HNSW、IVF+PQ)以保证响应速度。
  • 对中文场景:选择支持中文文本编码的 CLIP 变体或在中文数据上做对比微调。

二、多模态提示:不仅仅是“在文本里夹张图片”

要点一句话: 多模态提示把图片、表格、文本、视频等一并当作模型输入,借助“上下文 + 角色 + 历史对话”让模型基于多源信息推理与生成。

1、什么是多模态提示

传统提示是纯文本指令;多模态提示允许你在 prompt 里直接提供图片(或图片的表征)、表格片段、结构化 JSON 等,从而让 LLM 在回答时参考这些额外的上下文。例如给 AI 一个工程图 + 问题,模型应该把图中关键信息读出来并把它和合同文本关联起来。

2、工程方式(以 Ollama / 本地 LLM 为例)

  • 把图片以文件或预处理后的描述(如 OCR 或图像嵌入)附在对话上下文里;
  • 对话历史采用结构化消息(system/user/assistant 三角色)来维护上下文;
  • 如果模型支持原生视觉输入(如 Llama-vision),可直接把图片传给模型;否则把 OCR 或 CLIP embedding + 简短视觉描述作为 prompt 的一部分。

示例(伪代码):

messages = [
{"role":"system","content":"你是一位负责解析文档和图像的助理。"},
{"role":"user","content":"下面是一个工程图(images: ['diagram.png'])和合同文本,请找出图中B区域对应的合同条款。"}
]
response = ollama.chat(model="llama3.2-vision", messages=messages, images=["diagram.png"])

3、多模态提示的实践建议

  • 优先结构化:对于表格和表单,先用 OCR/表格解析库把它转成结构化 JSON,再把 JSON 摘要放进 prompt。
  • 分步提示(chain-of-thought 的工程化变体):先让模型做“观察阶段”(列出图片里可见元素),再让模型做“对齐阶段”(把观察到的元素与文本检索结果对齐),最后输出结论。分步更稳,便于插入工具调用。
  • 避免把全部像素塞进 prompt:直接传 raw image 并非总是最稳妥,很多工程上更可靠的做法是先做视觉预处理(OCR、分割、检测、CLIP embedding),再把摘要/嵌入传给 LLM。

三、工具调用:让模型像“协调者”而不是万能魔法师

要点一句话: 工具调用把外部能力(OCR、表格解析器、财务接口、实时数据)作为可调用函数,使模型在需要时下沉到专门工具获取高精度结果,然后再整合为自然语言输出。

1、为什么要用工具调用

LLM 本身擅长“模糊推理”和“生成文本”,但对精确计算、实时数据、或结构化解析并不可靠。通过工具调用,模型只负责判断何时以及如何调用工具,工具负责做精确工作,两者协同能显著提升工程可靠性与可解释性。

2、基本模式

  1. 模型在推理过程中决定需要外部数据或精确处理,返回一个“工具调用请求”,包含要调用的函数名与参数。
  2. 后端接收请求,调用相应工具(OCR、yfinance、表格解析器等)。
  3. 把工具结果反馈回模型,模型基于结果生成最终答案或继续下一步操作。

示例(股票价格检索的工程化流程):

# 工具端:获取股票价格
def get_stock_price(ticker):
import yfinance as yf
return yf.Ticker(ticker).history(period="1d")["Close"].iloc[-1]
# 模型端返回:
# tool_call = {"name":"get_stock_price","args":{"ticker":"AAPL"}}
# 后端执行 get_stock_price 并把结果回填给模型,然后模型生成自然语言回复。

3、工程要点与陷阱

  • 工具接口必须具有稳定的输入/输出 schema,便于模型自动构造参数与解析返回值。
  • 权限与安全:对能改变外部状态的工具(写数据库、调用交易接口)要做严格权限控制与审计。
  • 超时与降级:工具可能不可用,设计降级路径(比如缓存结果或返回“当前不可用,请稍后重试”的可解释响应)。
  • 可解释性:把每次工具调用、参数和返回日志记录下来,便于事后审计和错误排查。

四、把三者串联起来——多模态 RAG 的工程模板

一个成熟的多模态 RAG 系统,需要把上面三者在流水线里串联:

  1. 数据接入层:图片/PDF/表格/数据库 → OCR、表格解析、图像检测 → 结构化文本 + 图像切片 + CLIP 嵌入入库。
  2. 向量检索层:文本向量(text-encoder)+ 图像向量(CLIP image-encoder)存入向量索引,支持跨模态检索(text→image, image→text)。
  3. 检索增强生成(RAG)层:检索到的片段(文本/图像/表格片段)作为 prompt 的上下文供多模态 LLM 使用;在必要时触发工具调用完成精确计算或结构化解析。
  4. 交互层:支持多轮对话历史、角色设定(system/user/assistant),并将多模态输入以最合适的形式提供给模型(raw image 或 embedding+summary)。

五、工程实战

  • 初期优先使用预训练 CLIP + 现成 LLM(有视觉输入能力的模型),先把流程跑通,再做领域微调。
  • 对于中文和行业术语,优先做小规模对比微调(contrastive fine-tuning)以提升召回质量。
  • OCR/表格解析当作“必须环节”,不要完全依赖模型直接从像素里读文本。
  • 设计好工具 schema错误降级策略,这是工程可用性的关键。
  • 日志与度量:记录检索召回质量、工具调用成功率、用户满意度(或人工打标),用于持续迭代。

多模态 RAG 并不是把“所有东西都丢给大模型”那么简单,而是把强检索(CLIP + 向量库)+ 精处理(工具)+ 强推理(多模态 LLM)三者恰当地编排在一起。工程的艺术在于:把每个模块用它最擅长的方式实现,并用清晰的接口把它们串联成一条可靠的流水线。

六、如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

一直在更新,更多的大模型学习和面试资料已经上传带到CSDN的官方了,有需要的朋友可以扫描下方二维码免费领取【保证100%免费】👇👇

在这里插入图片描述

01.大模型风口已至:月薪30K+的AI岗正在批量诞生

在这里插入图片描述

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

02.大模型 AI 学习和面试资料

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

您可能感兴趣的与本文相关的镜像

Qwen3-VL-30B

Qwen3-VL-30B

图文对话
Qwen3-VL

Qwen3-VL是迄今为止 Qwen 系列中最强大的视觉-语言模型,这一代在各个方面都进行了全面升级:更优秀的文本理解和生成、更深入的视觉感知和推理、扩展的上下文长度、增强的空间和视频动态理解能力,以及更强的代理交互能力

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值