引言:
计算机视觉与模式识别会议(CVPR)是计算机视觉领域最具影响力和顶级的国际会议之一。在CVPR 2023中,目标检测与目标跟踪技术是备受关注的研究方向。本文将综述CVPR 2023中目标检测与目标跟踪的最新研究进展,并提供一些相关的源代码示例。
目标检测:
在目标检测领域,研究人员提出了一系列创新的方法和模型,以提高目标检测的准确性和效率。其中,一种常见的方法是基于深度学习的目标检测模型,如Faster R-CNN、YOLO和SSD等。这些模型通过将目标检测任务转化为区域建议和分类问题,能够在复杂场景中实现高效准确的目标检测。
以下是一个基于Faster R-CNN的目标检测示例代码:
import torch
import torchvision
# 加载预训练模型
model = torchvision.models.detection.