CVPR 2023:目标检测与目标跟踪技术综述

本文综述了CVPR 2023中,目标检测与目标跟踪的最新研究,强调了深度学习在提高这两个任务的准确性和效率方面的贡献。Faster R-CNN、YOLO和SSD等模型用于目标检测,而DeepSORT等深度学习方法在目标跟踪中表现出色。这些技术创新为计算机视觉领域的进步带来了重大突破。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言:
计算机视觉与模式识别会议(CVPR)是计算机视觉领域最具影响力和顶级的国际会议之一。在CVPR 2023中,目标检测与目标跟踪技术是备受关注的研究方向。本文将综述CVPR 2023中目标检测与目标跟踪的最新研究进展,并提供一些相关的源代码示例。

目标检测:
在目标检测领域,研究人员提出了一系列创新的方法和模型,以提高目标检测的准确性和效率。其中,一种常见的方法是基于深度学习的目标检测模型,如Faster R-CNN、YOLO和SSD等。这些模型通过将目标检测任务转化为区域建议和分类问题,能够在复杂场景中实现高效准确的目标检测。

以下是一个基于Faster R-CNN的目标检测示例代码:

import torch
import torchvision

# 加载预训练模型
model = torchvision.models.detection.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值