【推荐架构day6】Instagram推荐算法的基本原理

本文详细介绍了Instagram Explore页面的构建过程,包括基础构件开发、使用IGQL进行快速迭代、账户嵌入的个性化排名以及模型蒸馏预选候选对象。通过高效的三阶段排名漏斗,Instagram能够从海量内容中推荐与用户最相关的内容,同时支持大规模快速实验,为用户提供个性化体验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

每个月,超过一半的 Instagram 社区成员都会访问 Instagram Explore 页面,寻找他们感兴趣的新照片、视频和故事。在数以亿计的选项中,如何大规模实时推荐与用户最相关的内容,给 Instagram 的工程师带来了许多挑战,这些挑战需要新的工程解决方案。

Instagram 通过创建一系列自定义查询语言、轻量级建模技术和支持高速实验的工具来解决这些挑战。这些系统支持 Explore 页面的规模,同时也提高了开发人员的效率。总的来说,这些解决方案描述了一种高效的人工智能系统,该系统基于一个高效的三阶段排名漏斗(3-part ranking funnel),它能提取 650 亿个特征,每秒进行 9000 万个模型预测。

本文,我们分享了让 Explore 页面起作用的关键要素的第一次详细概述,以及我们在 Instagram 上如何为人们提供个性化内容。

开发 Explore 页面的基础构件

在着手构建一个推荐引擎来处理每天上传到 Instagram 上的大量照片和视频之前,我们开发了一些基础工具来解决三个重要需求。我们需要进行大规模快速实验的能力,需要在人们兴趣范围内捕获更强的信号,需要一种计算效率高的方式来确保我们的建议既高质量又新鲜,这些定制技术是实现我们目标的关键。

 

使用 IGQL 快速迭代:一种新的特定领域语言

构建最佳推荐算法和技术是机器学习社区的研究领域之一,并且,根据任务的不同,选择合适的系统的过程也会有很大的不同。例如,虽然一种算法可以有效地识别长期兴趣,但另一种算法在识别基于最近内容的推荐方面可能表现得更好。我们的工程团队使用不同的方法进行迭代,我们需要一种方法,既能有效地尝试新的想法,又能将有前途的想法轻松地应用到大规模系统中,而不必太过担心计算资源的影响,如 CPU 和内存的使用。

为了解决这个问题,我们创建并发布了 IGQL,这是一种针对推荐系统中检索候选对象进行优化的特定领域语言。它的执行是在 C++ 中优化的,这有助于最小化延迟和计算资源。在测试新的研究想法时,还具有可扩展性和易用性。IGQL 既是静态验证,也是高级语言。工程师可以像 Python 那样编写推荐算法,并在 C++ 中快速高效地执行。

user
.let(seed_id=user_id)
.liked(max_num_to_retrieve=30)
.account_nn(embedding_config=default)
.posted_media(max_media_per_account=10)
.filter(non_recommendable_model_threshold=0.2)
.rank(ranking_model=default)
.diversify_by(seed_id, meth
### Instagram 帖子抓取算法实现与最佳实践 为了有效地从 Instagram 平台获取公开帖子数据,通常会采用 Web 抓取技术。然而需要注意的是,在开发此类工具时应严格遵循 Instagram 的服务条款以及相关法律法规。 #### 使用官方 API 进行合法的数据访问 最安全可靠的方法是通过 Instagram Graph API 来请求所需的信息。这需要先注册开发者账号并申请相应的权限[^1]: ```python import requests def get_instagram_posts(access_token, user_id): url = f"https://graph.instagram.com/v12.0/{user_id}/media" params = { 'access_token': access_token, 'fields': 'id,caption,media_type,thumbnail_url' } response = requests.get(url, params=params) data = response.json() return data['data'] ``` 此方法可以确保获得授权后的稳定数据流,并且能够长期维护而不会因为网站结构变化受到影响。 #### 非API方式的网页解析(不推荐) 如果确实无法使用 API,则可以通过模拟浏览器行为来加载页面内容再利用 HTML 解析库提取目标信息。但这种方式存在诸多风险,包括但不限于违反平台规定、IP 封禁等问题。 对于这种做法强烈建议仅限于研究目的和个人学习用途,严禁商业化应用或大规模操作。 #### 数据处理与存储优化 当涉及到大量数据时,可考虑借助分布式计算框架如 Apache Hadoop 和其上的 TableMapReduceUtil 工具类来进行高效的任务分配和结果汇总[^2]: ```java // Java code snippet demonstrating usage of TableMapReduceUtil with HBase Configuration conf = HBaseConfiguration.create(); Job job = new Job(conf); TableMapReduceUtil.initTableMapperJob( "instagram_data", // input table name null, // scan columns filter MyInstagramPostMapper.class,// mapper class Text.class, // output key type IntWritable.class, // output value type job // current job instance ); ``` 上述代码片段展示了如何配置一个基于 HBase 表格读写的 MapReduce 作业流程,适用于批量分析社交媒体元数据场景下的性能提升需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值