可视化分析大模型系统RAG数据处理流程

RAG

写在前面

欢迎大家关注我最近开发项目:LangChat是Java生态下企业级AIGC项目解决方案,在RBAC权限体系的基础上,集成AIGC大模型功能,帮助企业快速定制AI知识库、企业AI机器人。

开源地址:https://github.com/TyCoding/langchat

产品官网:http://langchat.cn/


Baptiste Adrien分享了使用 Vercel和NextJS 开发 RAG(检索增强生成)系统,使用图例详细介绍RAG系统的设计流程,非常直观详细,对于学习大模型AIGC产品设计流程非常有帮助。

1. 文档处理

开发RAG系统的第一步是准备文档,这些文档将作为RAG系统的基础输入数据。

图像

2. OCR文本提取

接下来,文档由 OCR(图片转文本)模型进行处理。如果需要,该模型会提取文本。

图像

3.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值