这份研究提出的BILLY框架极具创新性,为解决多LLM系统效率低的问题提供了关键思路。文章核心是通过融合角色向量,在单个大语言模型中实现多角色协作的创意生成效果,同时大幅降低计算成本与推理延迟。
一、文章主要内容总结
1. 研究背景与问题
- 现有方案局限:多LLM系统虽能模拟人类集体智能提升创意(如让模型分别扮演创意专家、环保主义者),但存在计算成本高、推理延迟长的问题,且易因沟通摩擦导致“过程损失”(集体成果低于个体贡献总和)。
- 单模型方案不足:通过提示词让单模型同时扮演多角色,难以实现角色的连贯融合,受模型能力和训练数据覆盖范围限制。
2. BILLY框架核心流程
BILLY(BlendIng persona vectors for Large Language model creativitY)是无训练成本的框架,核心分三步:
- 提取角色向量:通过对比方法,分别获取“体现特定角色”(如环保主义者)和“中性回应”的模型激活状态,计算两者差值作为角色向量,捕捉角色对应的激活空间方向。
- 离线融合向量:将多个角色向量(如创意专家+环保主义者)取平均值,生成单一复合引导向量,无需在线多模型交互。
- 推理时引导生成:在模型推理的特定层(实验中为第20层),将复合向量叠加到原始激活值上,引导模型生成融合
订阅专栏 解锁全文
291

被折叠的 条评论
为什么被折叠?



