【探讨】基于卷积神经网络深度学习模型的光场显微三维粒子空间分布重建

光场显微粒子图像测速技术通过单光场相机即可实现微尺度三维速度场的测量,但单光场相机角度信息有限,导致粒子重建的轴向分辨率低、重建速度慢。基于此,提出一种基于卷积神经网络深度学习模型的光场显微粒子三维空间分布重建方法,以实现粒子三维分布的高分辨率快速重建。首先,根据光场显微成像模型,基于粒子的实际发光特性生成模拟光场图像,进而构建“粒子空间分布-光场图像”数据集;然后,耦合光场显微成像特点,建立卷积神经网络深度学习模型,通过“粒子空间分布-光场图像”数据集对模型进行学习和训练,获得光场显微三维粒子空间分布预测模型,并对预测模型的性能进行评价;最后,测量水平微通道层流流动中的示踪粒子空间分布和三维速度场。模拟和实验结果表明:相比常规的反卷积方法,所提方法的粒子重建轴向分辨率提高79.3%,基本消除了粒子重建的拉伸效应;单张图像重建时间仅为0.243s,可以满足实时测量的需求。

关键词:图像重建技术;微尺度流动;深度学习;三维粒子场;光场显微粒子图像测速技术

1引言

微流控芯片技术作为操纵微量流体的新兴技术[1],可将样品制备、反应、检测等基本操作单元集成到一块微米尺度芯片上,具有分辨率高、灵敏度高、成本低、分析速度快等优点,被广泛应用于生物、医学、化学、流体等领域[2-4]。由于微流控芯片流动通道尺寸微小,粘性力和表面张力对流动的影响不能忽视,微尺度流动比宏观流动更为复杂[5-6]。速度场是反映流动状态的重要参数,准确、高效的三维速度场测量是微尺度流动特性研究的重要基础。目前,粒子图像测速技术(PIV)[7]凭借精度高、分辨率高以及对流场干扰少等优势,被广泛应用于速度场测量中。目前,三维显微粒子图像测速技术(3DMicro-PIV)已经成为微流动三维速度场测量的主流方式,主要包括共聚焦扫描Micro-PIV技术[8]、体视Micro-PIV技术[9]、散焦Micro-PIV技术[10]和光场Micro-PIV技术[11-12]等。其中,光场Micro-PIV技术通过单光场相机[13-14]在单帧单曝光下可同时记录测量体内示踪粒子的深度和横向位置信息,进而实现微尺度三维速度场的测量,具有系统简单和时间分辨率高的优点,已成为微流动三维速度场测量技术研究热点之一[15-17]。

光场Micro-PIV技术通过光场图像记录示踪粒子的空间分布信息后,需进行粒子空间分布三维重建结合互相关算法计算三维速度场,故示踪粒子空间分布的三维重建是实现微尺度三维速度场测量的关键环节。现有的光场显微三维粒子空间分布重建方法包括重聚焦[18]、反卷积[12]、深度学习[19-20]等。重聚焦技术是基于几 何光学的示踪粒子三维重建技术,由于此方法忽略了显微镜的衍射效应,且光线采样密度受到微透镜间距(通常在100μm量级)的限制,其重建示踪粒子的横向分辨率和轴向定位精度较低。为提升粒子空间分布的重建分辨率,Song等[12]将基于波动光学的反卷积重建算法(LFD)引入光场Micro-PIV技术中,采用基于点扩散函数的Richardson-Lucy迭代算法[12,21-22]进行反演计算。但由于点扩散函数不满足平移不变性[23-24],反卷积算法 需要进行多次迭代计算,重建速度慢。此外,由于成像系统收光角度有限,采集的光场图像角度信息不足,粒子重建的轴向拉伸现象明显,轴向分辨率低。

近年来,将深度学习用于光场显微三维重建技术的研究已引起越来越多的关注[19-20,25]。Wagner等[19]提出一种基于深度学习的光场显微图像重建方法,该方法采用光场显微镜和平面照明显微镜通过实验分别获取光场图像和对应的三维体空间分布,从而实现深度学习数据集的构建,并构建卷积神经网络模型实现了生物影像的三维重建,其轴向重建分辨率可达(7.1±1.3)μm。Wang等[20]将视图通道深度(VCD)神经网络与光场显微镜结合,通过重聚焦扫描显微镜拍摄静态生物样本构建数据集,并利用视图通道深度神经网络模型实现动态样本的三维图像重建,取得了较好的重建效果。深度学习通过学习大量数据集并提取特征,从而实现对未学习样本的预测,因此,数据集样本丰富性对深度学习模型的训练结果具有重要影响。现有的基于深度学习的光场显微三维重建方法数据集主要通过拍摄的方式获取,需要采用共聚焦扫描显微镜或选择平面照明显微镜等高分辨率成像设备,数据获取成本高,效率低,只适用于静态测量,且数据样本多样性有限,限制了深度学习技术在光场显微三维流场测量中的应用。

本文提出一种基于卷积神经网络深度学习模型的光场显微三维粒子分布重建方法,采用数值模拟方法构建“粒子空间分布-光场图像”数据集,进而搭建光场显微三维粒子分布卷积神经网络重建模型,并使用该模型对所建立的数据集进行学习和训练以获得粒子分布预测模型,并对预测模型的性能进行分析和评价。最后,通过微尺度层流流动速度场测量对所提方法的可行性进行实验研究。

2 基于卷积神经网络的光场显微粒子三维空间分布重建方法

2.1数据集建立

光场显微成像过程如图1所示。点光源发出的光线,经显微镜后会聚在微透镜阵列上,每个微透镜把接收光线按方向折射到其覆盖的传感器的不同像素上,形成离散的弥散斑。利用光线落在传感器上像素的坐标和对应微透镜的坐标,可以记录这条光线的方向和位置信息,获得的光场显微图像中的每个像素都对应记录着某个特定方向的光线。

图片

图1光场显微成像过程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值